Learn More
All tuberculosis vaccines currently in clinical trials are designed as prophylactic vaccines based on early expressed antigens. We have developed a multistage vaccination strategy in which the early antigens Ag85B and 6-kDa early secretory antigenic target (ESAT-6) are combined with the latency-associated protein Rv2660c (H56 vaccine). In CB6F1 mice we show(More)
Hippocampal atrophy and neuron loss are early and reproducible findings in Alzheimer's disease, and recent magnetic resonance imaging studies indicate that hippocampal atrophy may also be present in Parkinson's disease (PD). To determine whether or not cell loss occurs in PD, we estimated the total neuron and glial cell numbers as well as the total volume(More)
BACKGROUND The current vaccine against tuberculosis (TB), BCG, has failed to control TB worldwide and the protective efficacy is moreover limited to 10-15 years. A vaccine that could efficiently boost a BCG-induced immune response and thus prolong protective immunity would therefore have a significant impact on the global TB-burden. METHODS/FINDINGS In(More)
BACKGROUND Previously we have shown that Ag85B-TB10.4 is a highly efficient vaccine against tuberculosis when delivered in a Th1 inducing adjuvant based on cationic liposomes. Another Th1 inducing adjuvant, which has shown a very promising profile in both preclinical and clinical trials, is IC31. In this study, we examined the potential of Ag85B-TB10.4(More)
BACKGROUND Recently we and others have identified CD8 and CD4 T cell epitopes within the highly expressed M. tuberculosis protein TB10.4. This has enabled, for the first time, a comparative study of the dynamics and function of CD4 and CD8 T cells specific for epitopes within the same protein in various stages of TB infection. METHODS AND FINDINGS We(More)
Although infection with Mycobacterium tuberculosis (M.tb) induces a robust CD8 T cell response, the role of CD8 T cells in the defense against M.tb, and the mechanisms behind the induction of CD8 T cells, is still not clear. TB10.4 is a recently described Ag that is expressed by both bacillus Calmette-Guérin (BCG) and M.tb. In the present study, we describe(More)
The majority of vaccine candidates in clinical development are highly purified proteins and peptides relying on adjuvants to enhance and/or direct immune responses. Despite the acknowledged need for novel adjuvants, there are still very few adjuvants in licensed human vaccines. A vast number of adjuvants have been tested pre-clinically using different(More)
BACKGROUND Although CD4 T cells are crucial for defense against M.tb, it is still not clear whether the optimal response against M.tb in fact involves both CD4 and CD8 T cells. To test this, we used a new vaccine strategy that generated a strong balanced T cell response consisting of both CD4 and CD8 T cells. METHODS AND FINDINGS To compare CD4 and CD8(More)
In the present work, we evaluated a new TB vaccine approach based on a combination of the Mycobacterium bovis bacillus Calmette-Guérin (BCG) vaccine and a subunit vaccine consisting of the proteins Ag85B and ESAT-6. We demonstrate that in addition to its vaccine efficacy BCG is an immune modulator that can potentiate a Th1 immune response better than the(More)
More than 80 years after the introduction of Bacillus Calmette-GuErin, the first tuberculosis vaccine, new vaccines for tuberculosis are finally in clinical trials. The selection of antigens on which new subunit vaccines are based represent the first fulfillment of the promise of proteomics and genomics, and the delivery systems for these antigens are(More)