Roland W. Wagner

Learn More
Phosphorothioate oligodeoxynucleotides containing the C-5 propyne analogs of uridine and cytidine bind RNA with high affinity and are potent antisense inhibitors of gene expression. In a cellular assay, gene-specific antisense inhibition occurred at nanomolar concentrations of oligonucleotide, was dose-dependent and exquisitely sensitive to sequence(More)
Development of antisense technology has focused in part on creating improved methods for delivering oligodeoxynucleotides (ODNs) to cells. In this report, we describe a cationic lipid that, when formulated with the fusogenic lipid dioleoylphosphatidyliethanolamine, greatly improves the cellular uptake properties of antisense ODNs, as well as plasmid DNA.(More)
Eighteen years ago, antisense oligonucleotide therapeutics that can selectively knock out disease-causing genes could easily have been viewed as science fiction. Yet today, through much persistence and focused investment, the technology has nearly evolved to the point of realization. A number of first-generation antisense compounds have entered human(More)
The sugar moiety of nucleosides in solution is known to exist in a rapid dynamic equilibrium between extreme Northern and Southern conformations as defined in the pseudorotational cycle. In the present work, we describe how the bicyclo[3.1.0]hexane template fixes the ring pucker of 2'-deoxy-methanocarba-nucleosides 1-5 and 12 to values corresponding to(More)
Antisense gene inhibition occurs when an oligonucleotide (ON) has sufficient binding affinity such that it hybridizes its reverse complementary target RNA and prevents translation either by causing inactivation of the RNA (possibly by RNase H) or by interfering with a cellular process such as stalling a ribosome. The mechanisms underlying these processes(More)
Antisense technology is based on the ability to design potent, sequence-specific inhibitors. The G-clamp heterocycle modification, a cytosine analog that clamps on to guanine by forming an additional hydrogen bond, was rationally designed to enhance oligonucleotide/RNA hybrid affinity. A single, context-dependent substitution of a G-clamp heterocycle into a(More)
To understand the parameters required for designing potent and specific antisense C-5 propynyl-pyrimidine-2'-deoxyphosphorothioate-modified oligonucleotides (C-5 propyne ONs), we have utilized a HeLa line that stably expresses luciferase under tight control of a tetracycline-responsive promoter. Using this sensitive and regulatable cell-based system we have(More)
Platinum-pyrimidine complexes have been used as the sole electron-dense stains for electron microscopy on 18 types of mammalian cells. These recently discovered complexes react avidly with nucleic acids in vitro, are antitumor agents, and are highly soluble in water. In cells, they are selective for regions rich in nucleic acid and make visible the cellular(More)
The intracellular distribution and metabolism of microinjected fluorescently-labeled oligonucleotides (ODNs) have been evaluated using confocal fluorescence microscopy. Fluorescent phosphodiester ODNs, microinjected into the cytoplasm of mammalian cells, rapidly accumulate within the nucleus; the fluorescence disappears with a half-life of 15-20 minutes.(More)