Learn More
The 'protein only' hypothesis states that a modified form of normal prion protein triggers infectious neurodegenerative diseases, such as bovine spongiform encephalopathy (BSE), or Creutzfeldt-Jakob disease (CJD) in humans. Prion proteins are thought to exist in two different conformations: the 'benign' PrPcform, and the infectious 'scrapie form', PrPsc.(More)
Prions are infectious particles causing transmissible spongiform encephalopathies (TSEs). They consist, at least in part, of an isoform (PrPSc) of the ubiquitous cellular prion protein (PrPC). Conformational differences between PrPC and PrPSc are evident from increased beta-sheet content and protease resistance in PrPSc. Here we describe a monoclonal(More)
NMR studies of amyloid b-peptides (Ab) in aqueous solution provide a novel way in which to characterize the apparent Alzheimer's disease-related conformational poly-morphism of Ab. In the aqueous medium, neither of the polypeptides Ab(1–40) ox or Ab(1–42) ox (both of which contain a methionine sulfoxide at position 35) is folded into a globular structure,(More)
The aggregation of proteins into oligomers and amyloid fibrils is characteristic of several neurodegenerative diseases, including Parkinson disease (PD). In PD, the process of aggregation of α-synuclein (α-syn) from monomers, via oligomeric intermediates, into amyloid fibrils is considered the disease-causative toxic mechanism. We developed α-syn mutants(More)
Amyloids are highly organized cross-beta-sheet-rich protein or peptide aggregates that are associated with pathological conditions including Alzheimer's disease and type II diabetes. However, amyloids may also have a normal biological function, as demonstrated by fungal prions, which are involved in prion replication, and the amyloid protein Pmel17, which(More)
The amylome is the universe of proteins that are capable of forming amyloid-like fibrils. Here we investigate the factors that enable a protein to belong to the amylome. A major factor is the presence in the protein of a segment that can form a tightly complementary interface with an identical segment, which permits the formation of a steric zipper-two(More)
Prion and nonprion forms of proteins are believed to differ solely in their three-dimensional structure, which is therefore of paramount importance for the prion function. However, no atomic-resolution structure of the fibrillar state that is likely infectious has been reported to date. We present a structural model based on solid-state nuclear magnetic(More)
Currently, the major drug discovery paradigm for neurodegenerative diseases is based upon high affinity ligands for single disease-specific targets. For Alzheimer's disease (AD), the focus is the amyloid beta peptide (Aß) that mediates familial Alzheimer's disease pathology. However, given that age is the greatest risk factor for AD, we explored an(More)
BACKGROUND Structural studies of integral membrane proteins (IMPs) are hampered by inherent difficulties in their heterologous expression and in the purification of solubilized protein-detergent complexes (PDCs). The choice and concentrations of detergents used in an IMP preparation play a critical role in protein homogeneity and are thus important for(More)
The NMR structure of the recombinant human doppel protein, hDpl(24-152), contains a flexibly disordered "tail" comprising residues 24-51, and a globular domain extending from residues 52 to 149 for which a detailed structure was obtained. The globular domain contains four alpha-helices comprising residues 72-80 (alpha1), 101-115 (alpha2(a)), 117-121(More)