Learn More
Alzheimer's disease is the most fatal neurodegenerative disorder wherein the process of amyloid-beta (Abeta) amyloidogenesis appears causative. Here, we present the 3D structure of the fibrils comprising Abeta(1-42), which was obtained by using hydrogen-bonding constraints from quenched hydrogen/deuterium-exchange NMR, side-chain packing constraints from(More)
Fast transverse relaxation of 1H, 15N, and 13C by dipole-dipole coupling (DD) and chemical shift anisotropy (CSA) modulated by rotational molecular motions has a dominant impact on the size limit for biomacromolecular structures that can be studied by NMR spectroscopy in solution. Transverse relaxation-optimized spectroscopy (TROSY) is an approach for(More)
The corticotropin-releasing factor (CRF) ligand family has diverse effects on the CNS, including the modulation of the stress response. The ligands' effects are mediated by binding to CRF G protein-coupled receptors. We have determined the 3D NMR structure of the N-terminal extracellular domain (ECD1) of the mouse CRF receptor 2beta, which is the major(More)
The cellular prion protein of the mouse, mPrP(C), consists of 208 amino acids (residues 23-231). It contains a carboxy-terminal domain, mPrP(121-231), which represents an autonomous folding unit with three alpha-helices and a two-stranded antiparallel beta-sheet. We expressed the complete amino acid sequence of the prion protein, mPrP(23-231), in the(More)
The 'protein only' hypothesis states that a modified form of normal prion protein triggers infectious neurodegenerative diseases, such as bovine spongiform encephalopathy (BSE), or Creutzfeldt-Jakob disease (CJD) in humans. Prion proteins are thought to exist in two different conformations: the 'benign' PrPcform, and the infectious 'scrapie form', PrPsc.(More)
The lectin chaperone calreticulin (CRT) assists the folding and quality control of newly synthesized glycoproteins in the endoplasmic reticulum (ER). It interacts with ERp57, a thiol-disulfide oxidoreductase that promotes the formation of disulfide bonds in glycoproteins bound by CRT. Here, we investigated the interaction between CRT and ERp57 by using(More)
The NMR structures of the recombinant human prion protein, hPrP(23-230), and two C-terminal fragments, hPrP(90-230) and hPrP(121-230), include a globular domain extending from residues 125-228, for which a detailed structure was obtained, and an N-terminal flexibly disordered "tail." The globular domain contains three alpha-helices comprising the residues(More)
Prion and nonprion forms of proteins are believed to differ solely in their three-dimensional structure, which is therefore of paramount importance for the prion function. However, no atomic-resolution structure of the fibrillar state that is likely infectious has been reported to date. We present a structural model based on solid-state nuclear magnetic(More)
Prions are infectious particles causing transmissible spongiform encephalopathies (TSEs). They consist, at least in part, of an isoform (PrPSc) of the ubiquitous cellular prion protein (PrPC). Conformational differences between PrPC and PrPSc are evident from increased beta-sheet content and protease resistance in PrPSc. Here we describe a monoclonal(More)
The recombinant murine prion protein, mPrP(23-231), was expressed in E. coli with uniform 15N-labeling. NMR experiments showed that the previously determined globular three-dimensional structure of the C-terminal domain mPrP(121-231) is preserved in the intact protein, and that the N-terminal polypeptide segment 23-120 is flexibly disordered. This(More)