Roland G. Kallen

Learn More
We describe the isolation and characterization of a cDNA encoding the alpha subunit of a new voltage-sensitive sodium channel, microI, from rat skeletal muscle. The 1840 amino acid microI peptide is homologous to alpha subunits from rat brain, but, like the protein from eel electroplax, lacks an extended (approximately 200) amino acid segment between(More)
The principal voltage-sensitive sodium channel from human heart has been cloned, sequenced, and functionally expressed. The cDNA, designated hH1, encodes a 2016-amino acid protein that is homologous to other members of the sodium channel multigene family and bears greater than 90% identity to the tetrodotoxin-insensitive sodium channel characteristic of rat(More)
species but encoded by orthologous genes have often Nomenclature of Voltage-Gated been given different names, so that there are multiple Sodium Channels synonyms for many of sodium channel isoforms. To eliminate confusion resulting from the multiplicity of names, we propose a standardized nomenclature for Voltage-gated sodium channels are critical elements(More)
Sodium channels have four homologous domains (D1-D4) each with six putative transmembrane segments (S1-S6). The highly charged S4 segments in each domain are postulated voltage sensors for gating. We made 15 charge-neutralizing or -reversing substitutions in the first or third basic residues (arginine or lysine) by replacement with histidine, glutamine, or(More)
The alpha subunit of a voltage-sensitive sodium channel characteristic of denervated rat skeletal muscle was cloned and characterized. The cDNA encodes a 2018 amino acid protein (SkM2) that is homologous to other recently cloned sodium channels, including a tetrodotoxin (TTX)-sensitive sodium channel from rat skeletal muscle (SkM1). The SkM2 protein is no(More)
Site-3 toxins have been shown to inhibit a component of gating charge (33% of maximum gating charge, Q(max)) in native cardiac Na channels that has been identified with the open-to-inactivated state kinetic transition. To investigate the role of the three outermost arginine amino acid residues in segment 4 domain IV (R1, R2, R3) in gating charge inhibited(More)
Cocaine and lidocaine are local anesthetics (LAs) that block Na currents in excitable tissues. Cocaine is also a cardiotoxic agent and can induce cardiac arrhythmia and ventricular fibrillation. Lidocaine is commonly used as a postinfarction antiarrhythmic agent. These LAs exert clinically relevant effects at concentrations that do not obviously affect the(More)
A pair of conserved methionine residues, located on the cytoplasmic linker between segments S4 and S5 in the fourth domain of human heart Na channels (hH1), plays a role in the kinetics and voltage dependence of inactivation. Substitution of these residues by either glutamine (M1651M1652/QQ) or alanine (MM/AA) increases the inactivation time constant (tau)(More)
The effects of Brazilian scorpion Tityus serrulatus toxin gamma (TiTx gamma) were studied on voltage-gated Na+ channels from human heart (hHl) and rat skeletal muscle (rSkM1). The Na+ channels were expressed in Xenopus laevis oocytes, and Na+ currents were recorded using two-microelectrode voltage-clamp techniques. In control experiments, the threshold of(More)
Two isoforms of voltage-dependent Na channels, cloned from rat skeletal muscle, were expressed in Xenopus oocytes. The currents of rSkM1 and rSkM2 differ functionally in 4 properties: (i) tetrodotoxin (TTX) sensitivity, (ii) mu-conotoxin (mu-CTX) sensitivity, (iii) amplitude of single channel currents, and (iv) rate of inactivation. rSkM1 is sensitive to(More)