Learn More
We present the latest version of the Groningen Molecular Simulation program package, GROMOS05. It has been developed for the dynamical modelling of (bio)molecules using the methods of molecular dynamics, stochastic dynamics, and energy minimization. An overview of GROMOS05 is given, highlighting features not present in the last major release, GROMOS96. The(More)
Experiment and computer simulation are two complementary tools to understand the dynamics and behavior of biopolymers in solution. One particular area of interest is the ensemble of conformations populated by a particular molecule in solution. For example, what fraction of a protein sample exists in its folded conformation? How often does a particular(More)
To evaluate the ability of molecular dynamics (MD) simulations using atomic force-fields to correctly predict stable folded conformations of a peptide in solution, we show results from MD simulations of the reversible folding of an octapeptide rich in alpha-aminoisobutyric acid (2-amino-2-methyl-propanoic acid, Aib) solvated in di-methyl-sulfoxide (DMSO).(More)
For the structure and function of proteins, the pH of the solution is one of the determining parameters. Current molecular dynamics (MD) simulations account for the solution pH only in a limited way by keeping each titratable site in a chosen protonation state. We present an algorithm that generates trajectories at a Boltzmann distributed ensemble of(More)
The aim of this study was to evaluate the thrombolytic activity of two hybrid plasminogen activators (HPAs) in a rabbit jugular vein thrombosis model. In the two HPAs the kringle-2 domain (K2tu-PA) or the finger and the kringle-2 domains (FK2tu-PA) of tissue-type plasminogen activator (t-PA) are linked to the catalytic protease domain of single chain(More)
Two hybrid plasminogen activators (K2tu-PA and FK2tu-PA), linking the kringle 2 domain or the finger plus the kringle 2 domains of tissue-type plasminogen activator (t-PA) to the catalytic domain of single-chain urokinase-type plasminogen activator (scu-PA) were studied. At variance with similar constructs previously reported, they were obtained by fusion(More)
Glia-derived nexin (GDN) is a 43-kDa glycoprotein isolated from rat glioma cell cultures. It promotes neurite extension in cultures of neuroblastoma cells and chick sympathetic neurons. Moreover, GDN is a potent serine protease inhibitor (serpin), belonging to the family of protease nexins. We report here the expression of rat GDN in the Saccharomyces(More)
A recombinant human plasminogen activator hybrid variant K2tu-PA, expressed in Chinese hamster ovary cells, is partially glycosylated at Asn12 (A chain, kringle-2 domain) and completely glycosylated at Asn247 (B chain, protease domain). After release of the N-linked carbohydrate chains by peptide-N4-(N-acetyl-beta-glucosaminyl)asparagine amidase F, the(More)
uK2t-PA is a hybrid plasminogen activator in which the epidermal growth factor-like domain of the urokinase-type plasminogen activator precedes the kringle 2 and catalytic domains of tissue-type plasminogen activator. The molecules are expressed in Chinese hamster ovary cells in two variant forms, a type II form in which only the protease domain is(More)