Learn More
Processes leading to the recovery of a normal three-layered urothelium from a hyperplastic urothelium induced by cyclophosphamide (CP) treatment in rats have been investigated. A single intraperitoneal (ip) dose of CP caused extensive loss of cells from urothelium, but the remaining cells started to express epidermal growth factor receptor (EGFR) in their(More)
As a model for defining the role of lysosomal cathepsins in apoptosis, we characterized the action of the lysosomotropic agent LeuLeuOMe using distinct cellular models. LeuLeuOMe induces lysosomal membrane permeabilization, resulting in release of lysosomal cathepsins that cleave the proapoptotic Bcl-2 family member Bid and degrade the antiapoptotic member(More)
Although the epithelial lining of much of the mammalian urinary tract is known simply as the urothelium, this epithelium can be divided into at least three lineages of renal pelvis/ureter, bladder/trigone, and proximal urethra based on their embryonic origin, uroplakin content, keratin expression pattern, in vitro growth potential, and propensity to(More)
Although many proteins essential for regulated neurotransmitter and peptide hormone secretion have been identified, little is understood about their precise roles at specific stages of the multistep pathway of exocytosis. To study the function of CAPS (Ca(2+)-dependent activator protein for secretion), a protein required for Ca(2+)-dependent exocytosis of(More)
The composition of the apical plasma membrane of bladder superficial urothelial cells is dramatically modified during cell differentiation, which is accompanied by the change in the dynamics of endocytosis. We studied the expression of urothelial differentiation-related proteins uroplakins and consequently the apical plasma membrane molecular composition in(More)
The luminal surface of differentiated urothelium is characterised by the presence of asymmetric unit membrane (AUM) which contains four major integral proteins, uroplakins. Cyclophosphamide (CP) causes extensive denudation of the urothelium that is followed by regeneration. In this study the differentiation of the urothelial luminal plasma membrane was(More)
Uroplakins, cytokeratins and the apical plasma membrane were studied in the epithelia of mouse urinary tract. In the simple epithelium covering the inner medulla of the renal pelvis, no uroplakins or cytokeratin 20 were detected and cells had microvilli on their apical surface. The epithelium covering the inner band of the outer medulla became(More)
Cytokeratins, uroplakins and the asymmetric unit membrane are biochemical and morphological markers of urothelial differentiation. The aim of our study was to follow the synthesis, subcellular distribution and supramolecular organization of differentiation markers, cytokeratins and uroplakins, during differentiation of umbrella cells of mouse bladder(More)
High transepithelial electrical resistance (TEER) demonstrates a functional permeability barrier of the normal urothelium, which is maintained by a layer of highly differentiated superficial cells. When the barrier is challenged, a quick regeneration is induced. We used side-by-side diffusion chambers as an ex vivo system to determine the time course of(More)
The formation of fusiform vesicles (FVs) is one of the most distinctive features in the urothelium of the urinary bladder. FVs represent compartments for intracellular transport of urothelial plaques, which modulate the surface area of the superficial urothelial (umbrella) cells during the distension-contraction cycle. We have analysed the three-dimensional(More)