Learn More
We present SimLex-999, a gold standard resource for evaluating distributional semantic models that improves on existing resources in several important ways. First, in contrast to gold standards such as WordSim-353 and MEN, it explicitly quantifies similarity rather than association or relatedness so that pairs of entities that are associated but not(More)
The scourge of cyberbullying has assumed alarming proportions with an ever-increasing number of adolescents admitting to having dealt with it either as a victim or as a bystander. Anonymity and the lack of meaningful supervision in the electronic medium are two factors that have exacerbated this social menace. Comments or posts involving sensitive topics(More)
We extend the classical single-task active learning (AL) approach. In the multi-task active learning (MTAL) paradigm, we select examples for several annotation tasks rather than for a single one as usually done in the context of AL. We introduce two MTAL metaprotocols, alternating selection and rank combination, and propose a method to implement them in(More)
Dependency parsing is a central task in the field of Natural Language Processing (NLP). The task involves the automatic labeling of natural language sentences with dependency structures, such that each word is labeled as the dependent of another word in the sentence (its syntactic head). This formalism is important, both in the linguistic aspect (Mel’čuk,(More)
Clustering is crucial for many NLP tasks and applications. However, evaluating the results of a clustering algorithm is hard. In this paper we focus on the evaluation setting in which a gold standard solution is available. We discuss two existing information theory based measures, V and VI, and show that they are both hard to use when comparing the(More)
We present a novel word level vector representation based on symmetric patterns (SPs). For this aim we automatically acquire SPs (e.g., “X and Y”) from a large corpus of plain text, and generate vectors where each coordinate represents the cooccurrence in SPs of the represented word with another word of the vocabulary. Our representation has three(More)
VerbNet (VN) is a major large-scale English verb lexicon. Mapping verb instances to their VN classes has been proven useful for several NLP tasks. However, verbs are polysemous with respect to their VN classes. We introduce a novel supervised learning model for mapping verb instances to VN classes, using rich syntactic features and class membership(More)
The task of Semantic Role Labeling (SRL) is often divided into two sub-tasks: verb argument identification, and argument classification. Current SRL algorithms show lower results on the identification sub-task. Moreover, most SRL algorithms are supervised, relying on large amounts of manually created data. In this paper we present an unsupervised algorithm(More)