Rohit Shastry

Learn More
An E×B probe was used to characterize the angular distribution of multiply-charged ions in the plume of a 6-kW Hall thruster operating at discharge voltages of 150-600 V, and anode mass flow rates of 10-30 mg/s. The local ion current fractions were measured in conjunction with ion current density at several locations from 0-30º from thruster centerline, and(More)
Various methods for accurately determining ion species' current fractions using E×B probes in Hall thruster plumes are investigated. The effects of peak broadening and charge exchange on the calculated values of current fractions are quantified in order to determine the importance of accounting for them in the analysis. It is shown that both peak broadening(More)
In preparation for in-depth internal wall measurements for erosion and electron mobility studies, a flush-mounted Langmuir probe and emissive probe were used to characterize the near-wall region near the exit plane of a 6-kW Hall thruster. Various plasma properties and electron energy distribution functions were measured at discharge voltages of 150 and 300(More)
In preparation for in-depth internal wall measurements for erosion and electron mobility studies, a flush-mounted Langmuir probe and emissive probe were used to characterize the near-wall region near the exit plane of a 6-kW Hall thruster. Various plasma properties and electron energy distribution functions were measured at discharge voltages of 150 and 300(More)
Various methods for accurately determining ion species' current fractions using E x B probes in Hall thruster plumes are investigated. The effects of peak broadening and charge exchange on the calculated values of current fractions are quantified in order to determine the importance of accounting for them in the analysis. It is shown that both peak(More)
In order to better understand interactions between the plasma and channel walls of a Hall thruster, the near-wall plasma was characterized within the H6 Hall thruster using five flush-mounted Langmuir probes. These probes were placed within the last 15% of the discharge channel and were used to measure plasma potential, electron temperature, and ion number(More)
Wall-mounted Langmuir probes are a promising internal diagnostic for Hall thrusters that can help understand critical plasma-wall interactions. However, the non-ideal environment within the discharge channel can complicate the implementation and interpretation of resulting probe characteristics. The effects of magnetic field and flowing plasma are(More)
A method for analyzing the Wien filter spectra obtained from the plumes of Hall thrusters is derived and presented. The new method extends upon prior work by deriving the integration equations for the current and species fractions. Wien filter spectra from the plume of the NASA-300M Hall thruster are analyzed with the presented method and the results are(More)
  • 1