Rohit Prativadi Prasankumar

Learn More
We present the first ultrafast time-resolved optical measurements, to the best of our knowledge, on ensembles of germanium nanowires. Vertically aligned germanium nanowires with mean diameters of 18 and 30 nm are grown on (111) silicon substrates through chemical vapor deposition. We optically inject electron-hole pairs into the nanowires and exploit the(More)
We demonstrate a nanoscale, subpicosecond (ps) metamaterial device capable of terabit/second all-optical communication in the near-IR. The 600 fs response, 2 orders of magnitude faster than previously reported, is achieved by accessing a previously unused regime of high-injection level, subpicosecond carrier dynamics in the alpha-Si dielectric layer of the(More)
We use optical-pump terahertz-probe spectroscopy to investigate the near-threshold behavior of the photoinduced insulator-to-metal (IM) transition in vanadium dioxide thin films. Upon approaching Tc a reduction in the fluence required to drive the IM transition is observed, consistent with a softening of the insulating state due to an increasing metallic(More)
Ultrafast photoinduced phase transitions could revolutionize data-storage and telecommunications technologies by modulating signals in integrated nanocircuits at terahertz speeds. In quantum phase-changing materials (PCMs), microscopic charge, lattice, and orbital degrees of freedom interact cooperatively to modify macroscopic electrical and optical(More)
We demonstrate RF sputtered, non-epitaxially-grown semiconductor nanocrystallite-doped silica films for mode locking a Cr:forsterite laser. We controlled the size and the optical properties of the nanocrystallites by varying the ratio of InAs to SiO(2) during fabrication. Femtosecond pump-probe measurements were performed to characterize the nonlinear(More)
Recent success in the fabrication of axial and radial core-shell heterostructures, composed of one or more layers with different properties, on semiconductor nanowires (NWs) has enabled greater control of NW-based device operation for various applications. (1-3) However, further progress toward significant performance enhancements in a given application is(More)
A new approach to all-optical detection and control of the coupling between electric and magnetic order on ultrafast timescales is achieved using time-resolved second-harmonic generation (SHG) to study a ferroelectric (FE)/ferromagnet (FM) oxide heterostructure. We use femtosecond optical pulses to modify the spin alignment in a Ba(0.1)Sr(0.9)TiO3(More)
We describe an extended cavity femtosecond Cr:LiSAF laser pumped by inexpensive single spatial mode diodes. Using a multi-pass cavity (MPC) to lower the repetition rate and a saturable Bragg reflector (SBR) for mode-locking, pulse energies of 0.75 nJ at a repetition rate of 8.6 MHz are achieved with durations of 39 fs and bandwidths of 20 nm in a prismless(More)
A new femtosecond pump-probe spectroscopy technique is demonstrated that permits the high-speed, parallel acquisition of pump-probe measurements at multiple wavelengths. This is made possible by use of a novel, two-dimensional smart pixel detector array that performs amplitude demodulation in real time on each pixel. This detector array can not only achieve(More)