Rogerio Amino

Learn More
The merozoite stage of the malaria parasite that infects erythrocytes and causes the symptoms of the disease is initially formed inside host hepatocytes. However, the mechanism by which hepatic merozoites reach blood vessels (sinusoids) in the liver and escape the host immune system before invading erythrocytes remains unknown. Here, we show that parasites(More)
Plasmodium, the parasite that causes malaria, is transmitted by a mosquito into the dermis and must reach the liver before infecting erythrocytes and causing disease. We present here a quantitative, real-time analysis of the fate of parasites transmitted in a rodent system. We show that only a proportion of the parasites enter blood capillaries, whereas(More)
The malaria sporozoite, the parasite stage transmitted by the mosquito, is delivered into the dermis and differentiates in the liver. Motile sporozoites can invade host cells by disrupting their plasma membrane and migrating through them (termed cell traversal), or by forming a parasite-cell junction and settling inside an intracellular vacuole (termed cell(More)
In the Americas, areas with a high risk of malaria transmission are mainly located in the Amazon Forest, which extends across nine countries. One keystone step to understanding the Plasmodium life cycle in Anopheles species from the Amazon Region is to obtain experimentally infected mosquito vectors. Several attempts to colonise Anopheles species have been(More)
A new view into the life of malaria parasites is now possible owing to recent advances in imaging techniques and to the generation of tagged parasites. Insights into how parasites interact with their insect vectors and mammalian hosts have been gained by the study of various parasitic forms in their natural environment. Quantitative analysis of Plasmodium(More)
Malaria infection starts when the sporozoite stage of the Plasmodium parasite is injected into the skin by a mosquito. Sporozoites are known to traverse host cells before finally invading a hepatocyte and multiplying into erythrocyte-infecting forms, but how sporozoites reach hepatocytes in the liver and the role of host cell traversal (CT) remain unclear.(More)
Malaria, the disease caused by Plasmodium, kills more than 1 million people annually. Little is known of the pre-erythrocytic phase of the parasite life cycle, i.e., after the sporozoite stage is inoculated in the dermis by a mosquito and before the erythrocyte-infecting stage is released from hepatocytes. We present here a quantitative, real-time analysis(More)
Malaria, which is caused by Plasmodium spp., starts with an asymptomatic phase, during which sporozoites, the parasite form that is injected into the skin by a mosquito, develop into merozoites, the form that infects erythrocytes. This pre-erythrocytic phase is still the most enigmatic in the parasite life cycle, but has long been recognized as an(More)
CD8(+) T cells are specialized cells of the adaptive immune system capable of finding and eliminating pathogen-infected cells. To date it has not been possible to observe the destruction of any pathogen by CD8(+) T cells in vivo. Here we demonstrate a technique for imaging the killing of liver-stage malaria parasites by CD8(+) T cells bearing a transgenic T(More)
The first step of Plasmodium development in vertebrates is the transformation of the sporozoite, the parasite stage injected by the mosquito in the skin, into merozoites, the stage that invades erythrocytes and initiates the disease. The current view is that, in mammals, this stage conversion occurs only inside hepatocytes. Here, we document the(More)