Learn More
An extended Fourier pseudospectral time-domain (PSTD) method is presented to model atmospheric sound propagation by solving the linearized Euler equations. In this method, evaluation of spatial derivatives is based on an eigenfunction expansion. Evaluation on a spatial grid requires only two spatial points per wavelength. Time iteration is done using a(More)
The following parameters have been obtained for Plexiglas 55 and Lexan: refractive index n at 486.1 nm, 589.3 nm, and 656.3 nm, the thermooptic constant dn/dT at 632.8 nm, the linear thermal expansion coefficient; the photoelastic constants q(11), q(12), p(11), and p(12); and the elastic moduli c(11), c(12), s(11), and s(12). The experimental value for the(More)
The near-ground behavior of the low-frequency (100 Hz to 500 Hz) sound field in the nocturnal sound duct is studied theoretically and experimentally. In the first few meters of the atmosphere, narrow-band sound fields are found to have a characteristic vertical structure. The sound field is the superposition of a "surface mode," whose magnitude decreases(More)
  • R Waxler
  • 2001
The second-order time-averaged acoustics of a viscous, thermally conducting gas between closely spaced parallel plates is studied. The acoustic disturbance is studied by expanding the equations of fluid dynamics and heat transfer to second order in Mach number. The undisturbed state is allowed to have a nonzero temperature gradient. A set of coupled(More)
A method is reported for determining ground impedance in long-range propagation experiments by using the definition of impedance directly. The method is envisioned as way of measuring the impedence at multiple locations along the propagation path, using the signals broadcast during the experiment itself. In a short-range (10 m) test, the direct method was(More)
The use of expansions in vertical eigenmodes for long range infrasound propagation modeling in the effective sound speed approximation is investigated. The question of convergence of such expansions is related to the maximum elevation angles that are required. Including atmospheric attenuation leads to a non-self-adjoint vertical eigenvalue problem. The use(More)
On clear dry nights over flat land, a temperature inversion and stable nocturnal wind jet lead to an acoustic duct in the lowest few hundred meters of the atmosphere. An impulsive signal propagating in such a duct is received at long ranges from the source as an extended wave train consisting of a series of weakly dispersed distinct arrivals followed by a(More)
The use of modal expansions to solve the problem of atmospheric infrasound propagation is revisited. A different form of the associated modal equation is introduced, valid for wide-angle propagation in atmospheres with high Mach number flow. The modal equation can be formulated as a quadratic eigenvalue problem for which there are simple and efficient(More)
A natural terrain surface, because of its porosity, can support an acoustic surface wave that is a mechanical analog of the familiar vertically polarized surface wave in AM radio transmission. At frequencies of several hundred hertz, the acoustic surface wave is attenuated over distances of a few hundred meters. At lower frequencies (e.g., below(More)