Learn More
We investigated some visual background features that influence young cuttlefish, Sepia pharaonis, to change their skin patterning from 'general resemblance' of the substratum to disruptive coloration that breaks up their body form. Using computer-generated black/white checkerboard patterns as substrata, we first found that the size of the white squares had(More)
Laboratory mazes were used to study spatial-learning capabilities in cuttlefish (Sepia offcinalis), using escape for reinforcement. In preliminary observations, cuttlefish in an artificial pond moved actively around the environment and appeared to learn about features of their environment. In laboratory experiments, cuttlefish exited a simple alley maze(More)
The requirement of live marine prey for cephalopod mariculture has restricted its practicality for inland research laboratories, commercial enterprises and home aquarists. We evaluated acceptability and resultant growth on: (a) frozen marine shrimps, (b) live and frozen marine polychaete worms, (c) live and frozen marine crabs, (d) frozen marine fishes, (e)(More)
To evaluate the effect of crowding on cuttlefish (Sepia officinalis), a benthic cephalopod, the behavior of captive-reared cuttlefish was monitored for a period of 1 month. One group of 6 cuttlefish was housed in a tank 6.1 m in diameter (4.87 m2 per cuttlefish); another group of 6 was housed in a tank 1.5 m in diameter (0.29 m2 per cuttlefish). Cuttlefish(More)
Octopuses forage far from temporary home dens to which they return for shelter. Spatial tasks may assess learning. Octopuses (Octopus bimaculoides) were placed in a novel arena, and their movements were tracked for 72 hr. Movements around the arena decreased across time, consistent with exploratory learning. Next, octopuses were given 23 hr to move around(More)
Cephalopods are sensitive to the linear polarization characteristics of light. To examine if this polarization sensitivity plays a role in the predatory behavior of cuttlefish, we examined the preference of Sepia officinalis when presented with fish whose polarization reflection was greatly reduced versus fish whose polarization reflection was not affected.(More)
Cuttlefish are cephalopod molluscs that achieve dynamic camouflage by rapidly extracting visual information from the background and neurally implementing an appropriate skin (or body) pattern. We investigated how cuttlefish body patterning responses are influenced by contrast and spatial scale by varying the contrast and the size of checkerboard(More)
Among the changeable camouflage patterns of cuttlefish, disruptive patterning is shown in response to certain features of light objects in the visual background. However, whether animals show disruptive patterns is dependent not only on object size but also on their body size. Here, we tested whether cuttlefish (Sepia officinalis) are able to match their(More)
Individual cuttlefish, octopus and squid have the versatile capability to use body patterns for background matching and disruptive coloration. We define--qualitatively and quantitatively--the chief characteristics of the three major body pattern types used for camouflage by cephalopods: uniform and mottle patterns for background matching, and disruptive(More)