Roger S Seymour

Learn More
The relationship between mammalian basal metabolic rate (BMR, ml of O(2) per h) and body mass (M, g) has been the subject of regular investigation for over a century. Typically, the relationship is expressed as an allometric equation of the form BMR = aM(b). The scaling exponent (b) is a point of contention throughout this body of literature, within which(More)
Body size and temperature are primary determinants of metabolic rate, and the standard metabolic rate (SMR) of animals ranging in size from unicells to mammals has been thought to be proportional to body mass (M) raised to the power of three-quarters for over 40 years. However, recent evidence from rigorously selected datasets suggests that this is not the(More)
The importance of size as a determinant of metabolic rate (MR) was first suggested by Sarrus and Rameaux over 160 years ago. Max Rubner's finding of a proportionality between MR and body surface area in dogs (in 1883) was consistent with Sarrus and Rameaux's formulation and suggested a proportionality between MR and body mass (Mb) raised to the power of(More)
The form of the relationship between the basal metabolic rate (BMR) and body mass (M) of mammals has been at issue for almost seven decades, with debate focusing on the value of the scaling exponent (b, where BMR is proportional to M(b)) and the relative merits of b= 0.67 (geometric scaling) and b= 0.75 (quarter-power scaling). However, most analyses are(More)
Maximum left ventricular wall stress is calculated at end-diastolic volume and systemic arterial diastolic blood pressure, according to a thick-walled model for the principle of Laplace. Stress is independent of body mass and averages 13.9 kPa (+/-2.3; 95% confidence interval) in 24 species of mammals weighing 0.025-4,000 kg and 15.5 kPa (+/-4.7) in 12(More)
The inflorescence of Philodendron selloum temporarily maintains a core temperature of 38 degrees to 46 degrees C, despite air temperatures ranging from 4 degrees to 39 degrees C, by means of a variable metabolic rate. The heat is produced primarily by small, sterile male flowers that are capable of consuming oxygen at rates approaching those of flying(More)
The effect of feeding on the rate of oxygen consumption (M(O2)) of four groups of three southern bluefin tuna Thunnus maccoyii (SBT) was examined in a large static respirometer at water temperatures of 18.2-20.3 degrees C. Six feeding events of rations between 2.1-8.5% body mass (%M(b)) of Australian sardines (Sardinops neopilchardus) were recorded (two of(More)
Owing to the inherent difficulties of studying bluefin tuna, nothing is known of the cardiovascular function of free-swimming fish. Here, we surgically implanted newly designed data loggers into the visceral cavity of juvenile southern bluefin tuna (Thunnus maccoyii) to measure changes in the heart rate (fH) and visceral temperature (TV) during a two-week(More)
The controversial relationship between body mass and basal metabolic rate in animals revolves around two questions: what is the allometric scaling exponent and what is the functional basis for it? For mammals, the first question could be resolved if measurements from all 4600 extant species were available, but this study shows that data for only 150(More)
This study utilizes a swimming respirometer to investigate the effects of exercise and temperature on cardiorespiratory function of an active teleost, the yellowtail kingfish (Seriola lalandi). The standard aerobic metabolic rate (SMR) of S. lalandi (mean body mass 2.1 kg) ranges from 1.55 mg min(-1) kg(-1) at 20 degrees C to 3.31 mg min(-1) kg(-1) at 25(More)