Roger S. M. Rikken

Learn More
In this review we will focus on how magnetic fields can be used to manipulate the motion of various micro- and nanostructures in solution. We will distinguish between ferromagnetic, paramagnetic and diamagnetic materials. Furthermore, the use of various kinds of magnetic fields, such as homogeneous, inhomogeneous and rotating magnetic fields, is discussed.(More)
Polymersomes are robust, versatile nanostructures that can be tailored by varying the chemical structure of copolymeric building blocks, giving control over their size, shape, surface chemistry, and membrane permeability. In particular, the generation of nonspherical nanostructures has attracted much attention recently, as it has been demonstrated that(More)
Magnetic birefringence was used for in situ monitoring of the morphological changes in diamagnetic polymersomes during shape-transformation by dialysis. The birefringence was found to be very sensitive to the polymersome morphology, as determined by electron microscopy. The deflation of polymersomes into disks was observed, followed by a bending and partial(More)
Polymersomes are bilayer vesicles, self-assembled from amphiphilic block copolymers. They are versatile nanocapsules with adjustable properties, such as flexibility, permeability, size and functionality. However, so far no methodological approach to control their shape exists. Here we demonstrate a mechanistically fully understood procedure to precisely(More)
  • 1