Roger S. Armen

Learn More
We present a new method for the determination of bilayer structure based on a combination of computational studies and laboratory experiments. From molecular dynamics simulations, the volumes of submolecular fragments of saturated and unsaturated phosphatidylcholines in the liquid crystalline state have been extracted with a precision not available(More)
Poly(ADP-ribose) polymerases (PARPs) are a family of enzymes that use NAD(+) as a substrate to synthesize polymers of ADP-ribose (PAR) as post-translational modifications of proteins. PARPs have important cellular roles that include preserving genomic integrity, telomere maintenance, transcriptional regulation, and cell fate determination. The diverse(More)
We have determined consensus protein-fold classifications on the basis of three classification methods, SCOP, CATH, and Dali. These classifications make use of different methods of defining and categorizing protein folds that lead to different views of protein-fold space. Pairwise comparisons of domains on the basis of their fold classifications show that(More)
The conformational equilibrium between 3(10)- and alpha-helical structure has been studied via high-resolution NMR spectroscopy by Millhauser and coworkers using the MW peptide Ac-AMAAKAWAAKA AAARA-NH2. Their 750-MHz nuclear Overhauser effect spectroscopy (NOESY) spectra were interpreted to reflect appreciable populations of 3(10)-helix throughout the(More)
Neutrophil gelatinase associated lipocalin (NGAL), a constituent of neutrophil granules, is a member of the lipocalin family of binding proteins. NGAL can also be highly induced in epithelial cells in both inflammatory and neoplastic colorectal disease. NGAL is proposed to mediate inflammatory responses by sequestering neutrophil chemoattractants,(More)
The correct treatment of van der Waals and electrostatic nonbonded interactions in molecular force fields is essential for performing realistic molecular dynamics (MD) simulations of solvated polypeptides. The most computationally tractable treatment of nonbonded interactions in MD utilizes a spherical distance cutoff (typically, 8-12 A) to reduce the(More)
Small- and intermediate-conductance Ca(2+)-activated potassium channels, activated by Ca(2+)-bound calmodulin, have an important role in regulating membrane excitability. These channels are also linked to clinical abnormalities. A tremendous amount of effort has been devoted to developing small molecule compounds targeting these channels. However, these(More)
Transthyretin, beta(2)-microglobulin, lysozyme, and the prion protein are four of the best-characterized proteins implicated in amyloid disease. Upon partial acid denaturation, these proteins undergo conformational change into an amyloidogenic intermediate that can self-assemble into amyloid fibrils. Many experiments have shown that pH-mediated changes in(More)
Docking simulations are commonly used to understand drug binding and require the search of a large space of proteinligand conformations. Cloud and volunteer computing enable computationally expensive docking simulations at a rate never seen before but at the same time require scientists to deal with larger datasets. When analysing these datasets, a common(More)
Phosphorylation of a threonine residue (T308 in Akt1) in the activation loop of Akt kinases is a prerequisite for deregulated Akt activity frequently observed in neoplasia. Akt phosphorylation in vivo is balanced by the opposite activities of kinases and phosphatases. Here we describe that targeting Akt kinase to the cell membrane markedly reduced(More)