Learn More
Cell function depends on tissue rigidity, which cells probe by applying and transmitting forces to their extracellular matrix, and then transducing them into biochemical signals. Here we show that in response to matrix rigidity and density, force transmission and transduction are explained by the mechanical properties of the actin-talin-integrin-fibronectin(More)
Tissue rigidity regulates processes in development, cancer and wound healing. However, how cells detect rigidity, and thereby modulate their behaviour, remains unknown. Here, we show that sensing and adaptation to matrix rigidity in breast myoepithelial cells is determined by the bond dynamics of different integrin types. Cell binding to fibronectin through(More)
The commercial potential of olive oils from three autochthonous olive varieties Bodocal, Racimilla and Negral from Aragón (Spain) has been examined. Physicochemical characteristics, sensory analysis, nutritional composition, color and pigments were considered. The three varieties are generally used for producing table olives or olive oil in coupages but not(More)
Fundamental processes in cell adhesion, motility, and rigidity adaptation are regulated by integrin-mediated adhesion to the extracellular matrix (ECM). The link between the ECM component fibronectin (fn) and integrin α5β1 forms a complex with ZO-1 in cells at the edge of migrating monolayers, regulating cell migration. However, how this complex affects the(More)
Quartz tuning forks have become popular in nanotechnology applications, especially as sensors for scanning probe microscopy. The sensor's spring constant and the oscillation amplitude are required parameters to evaluate the tip-sample forces; however, there is certain controversy within the research community as to how to arrive at a value for the static(More)
Genome editing on human pluripotent stem cells (hPSCs) together with the development of protocols for organ decellularization opens the door to the generation of autologous bioartificial hearts. Here we sought to generate for the first time a fluorescent reporter human embryonic stem cell (hESC) line by means of Transcription activator-like effector(More)
Quartz Tuning Fork (QTF)-based Scanning Probe Microscopy (SPM) is an important field of research. A suitable model for the QTF is important to obtain quantitative measurements with these devices. Analytical models have the limitation of being based on the double cantilever configuration. In this paper, we present an electromechanical finite element model of(More)
1 Pluripotent Stem Cells and Activation of Endogenous Tissue Programs for Organ Regeneration, Institute for Bioengineering of Catalonia (IBEC), c/ Baldiri Reixac 15-21, 08028 Barcelona, Spain 2 Institute for Bioengineering of Catalonia (IBEC), c/ Baldiri Reixac 15-21, 08028 Barcelona, Spain; University of Barcelona, Spain Nanotechnology Platform, Institute(More)
  • 1