Learn More
A method is presented for the generation of parametric images of radioligand-receptor binding using PET. The method is based on a simplified reference region compartmental model, which requires no arterial blood sampling, and gives parametric images of both the binding potential of the radioligand and its local rate of delivery relative to the reference(More)
Dopaminergic neurotransmission may be involved in learning, reinforcement of behaviour, attention, and sensorimotor integration. Binding of the radioligand 11C-labelled raclopride to dopamine D2 receptors is sensitive to levels of endogenous dopamine, which can be released by pharmacological challenge. Here we use 11C-labelled raclopride and positron(More)
BACKGROUND Activated microglia have a key role in the brain's immune response to neuronal degeneration. The transition of microglia from the normal resting state to the activated state is associated with an increased expression of receptors known as peripheral benzodiazepine binding sites, which are abundant on cells of mononuclear phagocyte lineage. We(More)
A method for voxel by voxel statistical inference of PET radioligand receptor studies is presented. This method is aimed at detecting differences in radioligand binding between baseline and activation scans. It uses nonlinear least squares theory to estimate the ligand-receptor model parameters and utilizes the residuals to calculate their associated(More)
The current article presents theory for compartmental models used in positron emission tomography (PET). Both plasma input models and reference tissue input models are considered. General theory is derived and the systems are characterized in terms of their impulse response functions. The theory shows that the macro parameters of the system may be(More)
Examination of dopamine-D3 (D3) receptors with positron emission tomography (PET) have been hampered in the past by the lack of a PET ligand with sufficient selectivity for D3 over dopamine-D2 (D2) receptors. The two types co-localize in the brain, with D2 density significantly higher than D3, hence nonselective PET ligands inform on D2, rather than D3(More)
Synaptic dopamine release from embryonic nigral transplants has been monitored in the striatum of a patient with Parkinson's disease using [11C]-raclopride positron emission tomography to measure dopamine D2 receptor occupancy by the endogenous transmitter. In this patient, who had received a transplant in the right putamen 10 years earlier, grafts had(More)
BACKGROUND Pharmacological and postmortem investigations suggest that patients with major depressive disorder have alterations in function or density of brain serotonin1A (5-HT1A) receptors. The aim of the present study was to use positron emission tomography with the selective 5-HT1A receptor antagonist [11C]WAY-100635 to measure 5-HT1A receptor binding in(More)
Previous studies have demonstrated the ability of the [11C]raclopride positron emission tomography (PET) technique to measure behaviorally induced changes in endogenous dopamine transmission in humans. However, these studies have lacked well matched sensorimotor control conditions, making it difficult to know what sensory, cognitive, or motor features(More)
[Carbonyl-11C]WAY-100635 is a promising PET radioligand for the 5-HT1A receptor, having demonstrated more favorable characteristics for in vivo imaging than the previously available [O-methyl-11C]WAY-100635. The current study evaluates different tracer kinetic modelling strategies for the quantification of 5-HT1A receptor binding in human brain.(More)