Roger M. Jarvis

Learn More
Metabolomics and systems biology require the acquisition of reproducible, robust, reliable, and homogeneous biological data sets. Therefore, we developed and validated standard operating procedures (SOPs) for quenching and efficient extraction of metabolites from Escherichia coli to determine the best methods to approach global analysis of the metabolome.(More)
UNLABELLED We have implemented a multivariate statistical analysis toolbox, with an optional standalone graphical user interface (GUI), using the Python scripting language. This is a free and open source project that addresses the need for a multivariate analysis toolbox in Python. Although the functionality provided does not cover the full range of(More)
The rapid, accurate and non-invasive diagnosis of respiratory disease represents a challenge to clinicians, and the development of new treatments can be confounded by insufficient knowledge of lung disease phenotypes. Exhaled breath contains a complex mixture of volatile organic compounds (VOCs), some of which could potentially represent biomarkers for lung(More)
Fourier transform infrared (FT-IR) spectroscopy combined with multivariate statistical analyses was investigated as a physicochemical tool for monitoring secreted recombinant antibody production in cultures of Chinese hamster ovary (CHO) and murine myeloma non-secreting 0 (NS0) cell lines. Medium samples were taken during culture of CHO and NS0 cells lines,(More)
MOTIVATION The major difficulties relating to mathematical modelling of spectroscopic data are inconsistencies in spectral reproducibility and the black box nature of the modelling techniques. For the analysis of biological samples the first problem is due to biological, experimental and machine variability which can lead to sample size differences and(More)
Recently, it has been reported that the anti-viral drug, lopinavir, which is currently used as a human immunodeficiency virus (HIV) protease inhibitor, could also inhibit E6-mediated proteasomal degradation of mutant p53 in E6-transfected C33A cells. In this study, C33A parent control cells and HPV16 E6-transfected cells were exposed to lopinavir at(More)
Raman spectroscopy has recently been shown to be a potentially powerful whole-organism fingerprinting technique and is attracting interest within microbial systematics for the rapid identification of bacteria and fungi. However, while the Raman effect is so weak that only approximately 1 in 10(8) incident photons are Raman scattered (so that collection(More)
Raman microspectroscopy is a noninvasive, label-free, and single-cell technology for biochemical analysis of individual mammalian cells, organelles, bacteria, viruses, and nanoparticles. Chemical information derived from a Raman spectrum provides comprehensive and intrinsic information (e.g., nucleic acids, protein, carbohydrates, and lipids) of single(More)
Within microbiology Raman spectroscopy is considered as a very important whole-organism fingerprinting technique, which is used to characterise, discriminate and identify microorganisms and assess how they respond to abiotic or biotic stress. Enhancing the sensitivity of Raman spectroscopy is very beneficial for the rapid analysis of bacteria (and indeed(More)
The ability to identify pathogenic organisms rapidly provides significant benefits to clinicians; in particular, with respect to best prescription practices and tracking of recurrent infections. Conventional bioassays require 3-5 days before identification of an organism can be made, thus compromising the effectiveness with which patients can be treated for(More)