Learn More
Non-equilibrium Green function theory is formulated to meet the three main challenges of high bias quantum device modeling: self-consistent charging, incoherent and inelastic scattering, and band structure. The theory is written in a general localized orbital basis using the example of the zinc blende lattice. A Dyson equation treatment of the open system(More)
—Si/SiGe resonant interband tunnel diodes (RITDs) employing-doping spikes that demonstrate negative differential resistance (NDR) at room temperature are presented. Efforts have focused on improving the tunnel diode peak-to-valley current ratio (PVCR) figure-of-merit, as well as addressing issues of manufacturability and CMOS integration. Thin SiGe layers(More)
Si-based resonant bipolar transistors are demonstrated by the monolithic vertical integration of Si-based resonant interband tunnel diodes atop the emitter of Si/SiGe heterojunction bipolar transistors ~HBTs! on a silicon substrate. In the common emitter configuration, IC versus VCE shows negative differential resistance characteristics. The resulting(More)
Resonant tunneling through double barrier graphene systems: A comparative study of Klein and non-Klein tunneling structures PAMELA: An open-source software package for calculating nonlocal exact exchange effects on electron gases in core-shell nanowires AIP Advances 2, 032173 (2012) Tunable electronic transport characteristics through an AA-stacked bilayer(More)
The electronic and thermoelectric properties of one to four monolayers of MoS2, MoSe2, WS2, and WSe2 are calculated. For few layer thicknesses, the near degeneracies of the conduction band K and Σ valleys and the valence band Γ and K valleys enhance the n-type and p-type thermoelectric performance. The interlayer hybridization and energy level splitting(More)
Graphene exhibits extraordinary electrical properties and is therefore often envisioned to be the candidate material for post-silicon era as Silicon technology approaches fundamental scaling limits. Various Graphene based electronic devices and interconnects have been proposed in the past. In this paper, we explore the possibility of a hybrid fabric between(More)
Simulation of trap-assisted tunneling effect on characteristics of gallium nitride diodes Tuning of terahertz intrinsic oscillations in asymmetric triple-barrier resonant tunneling diodes Repeatable low-temperature negative-differential resistance from Al0.18Ga0.82N/GaN resonant tunneling diodes grown by molecular-beam epitaxy on free-standing GaN(More)
Simulation of trap-assisted tunneling effect on characteristics of gallium nitride diodes Tuning of terahertz intrinsic oscillations in asymmetric triple-barrier resonant tunneling diodes Repeatable low-temperature negative-differential resistance from Al0.18Ga0.82N/GaN resonant tunneling diodes grown by molecular-beam epitaxy on free-standing GaN(More)
Biological molecules such as deoxyribonucleic acid (DNA) possess inherent recognition and self-assembly capabilities, and are attractive templates for constructing functional hierarchical material structures as building blocks for nanoelectronics. Here we report the assembly and electronic functionality of nanoarchitectures based on conjugates of(More)
Graphene revealed a number of unique properties beneficial for electronics. However, graphene does not have an energy band-gap, which presents a serious hurdle for its applications in digital logic gates. The efforts to induce a band-gap in graphene via quantum confinement or surface functionalization have not resulted in a breakthrough. Here we show that(More)