Learn More
Visual mechanisms in primary visual cortex are suppressed by the superposition of gratings perpendicular to their preferred orientations. A clear picture of this process is needed to (i) inform functional architecture of image-processing models, (ii) identify the pathways available to support binocular rivalry, and (iii) generally advance our understanding(More)
Noradrenaline release in areas within the forebrain occurs following activation of noradrenergic cells in the locus coeruleus (LoC). Release of noradrenaline by attentional/arousal/vigilance factors appears to be essential for learning and is responsible for the consolidation of memory. Noradrenaline can activate any of nine different adrenoceptor (AR)(More)
Noradrenaline, acting via beta(2)- and beta(3)-adrenoceptors (AR), enhances memory formation in single trial-discriminated avoidance learning in day-old chicks by mechanisms involving changes in metabolism of glucose and/or glycogen. Earlier studies of memory consolidation in chicks implicated beta(3)- rather than beta(2)-ARs in enhancement of memory(More)
Afferents to the nucleus accumbens septi utilizing glutamate or aspartate have been investigated in the rat by autoradiography following injection and retrograde transport of D[3H]aspartate. Parallel experiments with the intra-accumbal injection of [3H]GABA were employed to establish the transmitter-selective nature of the retrograde labelling found with(More)
Noradrenaline, essential for the modulation of memory, is released in various parts of the brain from nerve terminals controlled by the locus coeruleus (LoC). Noradrenaline release consequent upon input from higher brain areas also occurs within the LoC itself. We examined the effect of noradrenaline on adrenergic receptors in the LoC on memory processing,(More)
From experiments using a discriminated bead task in young chicks, we have defined when and where adrenoceptors (ARs) are involved in memory modulation. All three ARs subtypes (alpha(1)-, alpha(2)- and beta-ARs) are found in the chick brain and in regions associated with memory. Glucose and glycogen are important in the role of memory consolidation in the(More)
Binding of two different antidepressant drugs, [3H]paroxetine and [3H]imipramine in 30 rat brain regions was visualized, compared and quantified by means of autoradiography and densitometry. Specific binding of [3H]paroxetine to coronal sections of diencephalon represented 85% of total binding and was saturable and of high affinity (KD, 0.36 +/- 0.07 nM)(More)
Noradrenaline plays distinct roles in the modulation and consolidation of memory for one-trial, discriminated, avoidance learning in the chick. We have previously shown that activation of beta2-, beta3- and alpha1-adrenoceptors (ARs) by injection into the multimodal forebrain association region (intermediate medial hyperstriatum ventrale [IMHV] or(More)
Noradrenaline is known to modulate memory formation in the mammalian hippocampus. We have examined how noradrenaline and selective beta-adrenoceptor (AR) agonists affect memory consolidation and how antagonists inhibit memory consolidation in the avian hippocampus. Injection of selective beta-AR agonists and antagonists at specific times within 30 min of a(More)
Consolidation of a labile memory which would not normally be stored can be achieved by intracerebral administration of noradrenaline. In a series of experiments using discriminated, one trial passive avoidance learning with the day-old chick, the effect of noradrenaline has been shown to be due to actions at different subtypes of adrenoceptors. The effect(More)