Learn More
Camera tracking is a fundamental requirement for video-based Augmented Reality applications. The ability to accurately calculate the intrinsic and extrinsic camera parameters for each frame of a video sequence is essential if synthetic objects are to be integrated into the image data in a believable way. In this paper, we present an accurate and reliable(More)
Generating accurate radiosity solutions of very complex environments is a time-consuming problem. We present a rapid hierarchical algorithm that enables such solutions to be computed quickly and efficiently. Firstly, a new technique for bounding the error in the transfer of radiosity between surfaces is discussed, incorporating bounds on form factors,(More)
Collaborative virtual environments (CVEs) enable two or more people, separated in the real world, to share the same virtual “space.” They can be used for many purposes, from teleconferencing to training people to perform assembly tasks. Unfortunately, the effectiveness of CVEs is compromised by one major problem: the delay that exists in the(More)
This paper describes a publicly available virtual reality (VR) system, GNU/MAVERIK, which forms one component of a complete 'VR operating system'. We give an overview of the architecture of MAVERIK, and show how it is designed to use application data in an intelligent way, via a simple, yet powerful, callback mechanism which supports an object-oriented(More)
Photometric reconstruction is the process of estimating the illumination and surface reflectance properties of an environment, given a geometric model of the scene and a set of photographs of its surfaces. For mixed-reality applications, such data is required if synthetic objects are to be correctly illuminated or if synthetic light sources are to be used(More)