Learn More
et al., 1994). JNK is activated by treatment of cells with cytokines (e.g., TNF and IL-1) and by exposure of cells to many forms of environmental stress The purpose of this review is to summarize recent advances that have been made toward understanding the JNK signaling pathway. It is now known that JNK Cells respond to changes in the physical and chemical(More)
Apoptosis plays an important role during neuronal development, and defects in apoptosis may underlie various neurodegenerative disorders. To characterize molecular mechanisms that regulate neuronal apoptosis, the contributions to cell death of mitogen-activated protein (MAP) kinase family members, including ERK (extracellular signal-regulated kinase), JNK(More)
The ultraviolet (UV) response of mammalian cells is characterized by a rapid and selective increase in gene expression mediated by AP-1 and NF-kappa B. The effect on AP-1 transcriptional activity results, in part, from enhanced phosphorylation of the c-Jun NH2-terminal activation domain. Here, we describe the molecular cloning and characterization of JNK1,(More)
The stress-inducible protein heme oxygenase-1 provides protection against oxidative stress. The anti-inflammatory properties of heme oxygenase-1 may serve as a basis for this cytoprotection. We demonstrate here that carbon monoxide, a by-product of heme catabolism by heme oxygenase, mediates potent anti-inflammatory effects. Both in vivo and in vitro,(More)
Protein kinases activated by dual phosphorylation on Tyr and Thr (MAP kinases) can be grouped into two major classes: ERK and JNK. The ERK group regulates multiple targets in response to growth factors via a Ras-dependent mechanism. In contrast, JNK activates the transcription factor c-Jun in response to pro-inflammatory cytokines and exposure of cells to(More)
The p38 mitogen-activated protein (MAP) kinase signal transduction pathway is activated by proinflammatory cytokines and environmental stress. The detection of p38 MAP kinase in the nucleus of activated cells suggests that p38 MAP kinase can mediate signaling to the nucleus. To test this hypothesis, we constructed expression vectors for activated MKK3 and(More)
Excitatory amino acids induce both acute membrane depolarization and latent cellular toxicity, which often leads to apoptosis in many neurological disorders. Recent studies indicate that glutamate toxicity may involve the c-Jun amino-terminal kinase (JNK) group of mitogen-activated protein (MAP) kinases. One member of the JNK family, Jnk3, may be required(More)
Treatment of cells with pro-inflammatory cytokines or ultraviolet radiation causes activation of the c-Jun NH2-terminal protein kinase (JNK). Activating transcription factor-2 (ATF2) was found to be a target of the JNK signal transduction pathway. ATF2 was phosphorylated by JNK on two closely spaced threonine residues within the NH2-terminal activation(More)
The c-Jun amino-terminal kinase (JNK) group of MAP kinases has been identified in mammals and insects. JNK is activated by exposure of cells to cytokines or environmental stress, indicating that this signaling pathway may contribute to inflammatory responses. Genetic and biochemical studies demonstrate that this signaling pathway also regulates cellular(More)