Roger G. Mark

Learn More
W e report the establishment of the Multiparameter Intelligent Monitoring in Intensive Care II (MIMIC-II) research database that is notable for four factors: it is publicly and freely available to other research organizations upon request; it encompasses a diverse population of intensive care unit (ICU) patients; it contains high temporal resolution data,(More)
MIMIC-III ('Medical Information Mart for Intensive Care') is a large, single-center database comprising information relating to patients admitted to critical care units at a large tertiary care hospital. Data includes vital signs, medications, laboratory measurements, observations and notes charted by care providers, fluid balance, procedure codes,(More)
OBJECTIVE We sought to develop an intensive care unit research database applying automated techniques to aggregate high-resolution diagnostic and therapeutic data from a large, diverse population of adult intensive care unit patients. This freely available database is intended to support epidemiologic research in critical care medicine and serve as a(More)
Physiological signals such as the electrocardiogram (ECG) and arterial blood pressure (ABP) in the intensive care unit (ICU) are often severely corrupted by noise, artifact and missing data, which lead to large errors in the estimation of the heart rate (HR) and ABP. A robust HR estimation method is described that compensates for these problems. The method(More)
The long-term ST database is the result of a multinational research effort. The goal was to develop a challenging and realistic research resource for development and evaluation of automated systems to detect transient ST segment changes in electrocardiograms and for supporting basic research into the mechanisms and dynamics of transient myocardial(More)
In the past few decades, analysis of heart sound signals (i.e. the phonocardiogram or PCG), especially for automated heart sound segmentation and classification, has been widely studied and has been reported to have the potential value to detect pathology accurately in clinical applications. However, comparative analyses of algorithms in the literature have(More)
BACKGROUND Over the past two decades, high false alarm (FA) rates have remained an important yet unresolved concern in the Intensive Care Unit (ICU). High FA rates lead to desensitization of the attending staff to such warnings, with associated slowing in response times and detrimental decreases in the quality of care for the patient. False arrhythmia(More)
BACKGROUND Text-based patient medical records are a vital resource in medical research. In order to preserve patient confidentiality, however, the U.S. Health Insurance Portability and Accountability Act (HIPAA) requires that protected health information (PHI) be removed from medical records before they can be disseminated. Manual de-identification of large(More)
The objective of this study is to develop a model of the cardiovascular system capable of simulating the short-term (< or = 5 min) transient and steady-state hemodynamic responses to head-up tilt and lower body negative pressure. The model consists of a closed-loop lumped-parameter representation of the circulation connected to set-point models of the(More)
High false alarm rates in the ICU decrease quality of care by slowing staff response times while increasing patient delirium through noise pollution. The 2015 Physio-Net/Computing in Cardiology Challenge provides a set of 1,250 multi-parameter ICU data segments associated with critical arrhythmia alarms, and challenges the general research community to(More)