Learn More
Previous studies have described UVA-induced DNA strand breakage at the binding sites of iodinated DNA minor groove binding bisbenzimidazoles. The DNA breakage, presumably mediated by the carbon-centred ligand radical produced by photodehalogenation, was also shown to be cytotoxic. The earlier studies included a comparison of three ligand isomers, designated(More)
We show the efficacy of a therapeutic strategy that combines the potency of a DNA-binding photosensitizer, UV(A)Sens, with the tumor-targeting potential of receptor-mediated endocytosis. The photosensitizer is an iodinated bibenzimidazole, which, when bound in the minor groove of DNA and excited by UV(A) irradiation, induces cytotoxic lesions attributed to(More)
Mechanisms responsible for selenium homeostasis were investigated in healthy adult men receiving diets adequate or low in Se (eight subjects per group). The appearance of a stable isotope of Se, 74Se, in plasma, urine, and feces was measured after oral administration of 74Se-selenite. One group received a restricted level of Se (18 +/- 1 micrograms/d) for(More)
The purpose of this study was to explore the fate of a single dose of labeled selenium as determined by its route of administration. Thus, the appearance of a stable isotope of selenium, administered as 74-Se-selenite, was measured in plasma, urine, and feces, with neutron activation analysis, following a 81.7 micrograms dose of 74Se-selenite given either(More)
The γH2AX focus assay represents a fast and sensitive approach for the detection of one of the critical types of DNA damage - double-strand breaks (DSB) induced by various cytotoxic agents including ionising radiation. Apart from research applications, the assay has a potential in clinical medicine/pathology, such as assessment of individual(More)
PURPOSE The aim of the study was to obtain evidence to support the hypothesis that the radioprotection by DNA-binding bibenzimidazoles is due to reduction by the DNA-bound ligand of transient radiation-induced oxidizing species on DNA, by following oxidation of the ligand after pulse radiolysis. A second aim was to compare the activities of methylproamine(More)
Following earlier reports of radioprotection of cells by Hoechst 33342, we have investigated radioprotection of isolated DNA by the minor groove binders Hoechst 33258 and Hoechst 33342. Analysis of radiation-induced single strand breakage in plasmid DNA (pBR322) showed concentration-dependant protection, up to a dose-modifying factor of 9.3 for 25 microM(More)
PURPOSE The therapeutic ratio for ionising radiation treatment of tumour is a trade-off between normal tissue side-effects and tumour control. Application of a radioprotector to normal tissue can reduce side-effects. Here we study the effects of a new radioprotector on the cellular response to radiation. Methylproamine is a DNA-binding radioprotector which,(More)
New analogues of the minor groove binding ligand Hoechst 33342 have been investigated in an attempt to improve radioprotective activity. The synthesis, DNA binding, and in vitro radioprotective properties of methylproamine, the most potent derivative, are reported. Experiments with V79 cells have shown that methylproamine is approximately 100-fold more(More)