Roger Engelmann

Learn More
PURPOSE The development of computer-aided diagnostic (CAD) methods for lung nodule detection, classification, and quantitative assessment can be facilitated through a well-characterized repository of computed tomography (CT) scans. The Lung Image Database Consortium (LIDC) and Image Database Resource Initiative (IDRI) completed such a database, establishing(More)
RATIONALE AND OBJECTIVES The Lung Image Database Consortium (LIDC) is developing a publicly available database of thoracic computed tomography (CT) scans as a medical imaging research resource to promote the development of computer-aided detection or characterization of pulmonary nodules. To obtain the best estimate of the location and spatial extent of(More)
We developed an advanced computer-aided diagnostic (CAD) scheme for the detection of various types of lung nodules on chest radiographs intended for implementation in clinical situations. We used 924 digitized chest images (992 noncalcified nodules) which had a 500 x 500 matrix size with a 1024 gray scale. The images were divided randomly into two sets(More)
Accurate segmentation of pulmonary nodules in computed tomography (CT) is an important and difficult task for computer-aided diagnosis of lung cancer. Therefore, the authors developed a novel automated method for accurate segmentation of nodules in three-dimensional (3D) CT. First, a volume of interest (VOI) was determined at the location of a nodule. To(More)
OBJECTIVE The purpose of our study was to evaluate whether a computer-aided diagnosis (CAD) scheme can assist radiologists in distinguishing small benign from malignant lung nodules on high-resolution CT (HRCT). MATERIALS AND METHODS We developed an automated computerized scheme for determining the likelihood of malignancy of lung nodules on multiple HRCT(More)
The authors developed a temporal subtraction scheme based on a nonlinear geometric warping technique to assist radiologists in the detection of interval changes in chest radiographs obtained on different occasions. The performance of the current temporal subtraction scheme is reasonably good; however, severe misregistration can occur in some cases. The(More)
This work presents the usefulness of texture features in the classification of breast lesions in 5518 images of regions of interest, which were obtained from the Digital Database for Screening Mammography that included microcalcifications, masses, and normal cases. Sixteen texture features were used, i.e., 13 were based on the spatial gray-level dependence(More)
RATIONALE AND OBJECTIVES The aim of the study is to investigate the effect of a computer-aided diagnostic (CAD) scheme on radiologist performance in the detection of lung cancers on chest radiographs. MATERIALS AND METHODS We combined two independent CAD schemes for the detection and classification of lung nodules into one new CAD scheme by use of a(More)
Computer-aided diagnosis (CAD) provides a computerized diagnostic result as a "second opinion" to assist radiologists in the diagnosis of various diseases by use of medical images. CAD has become a practical clinical approach in diagnostic radiology, although, at present, primarily in the area of detection of breast cancer in mammograms. Currently, a large(More)
RATIONALE AND OBJECTIVES The purpose of this study was to analyze the variability of experienced thoracic radiologists in the identification of lung nodules on computed tomography (CT) scans and thereby to investigate variability in the establishment of the "truth" against which nodule-based studies are measured. MATERIALS AND METHODS Thirty CT scans were(More)