Learn More
The latency between the appearance of a visual target and the start of the saccadic eye movement made to look at it varies from trial to trial to an extent that is inexplicable in terms of ordinary 'physiological' processes such as synaptic delays and conduction velocities. An alternative interpretation is that it represents the time needed to decide(More)
A fruitful quantitative approach to understanding how the brain makes decisions has been to look at the time needed to make a decision, and how it is affected by factors such as the supply of information, or an individual's expectations. This approach has led to a model of decision-making, consistent with recent neurophysiological data, that explains the(More)
The stop-signal or countermanding task probes the ability to control action by requiring subjects to withhold a planned movement in response to an infrequent stop signal which they do with variable success depending on the delay of the stop signal. We investigated whether performance of humans and macaque monkeys in a saccade countermanding task was(More)
Reaction times generally follow a simple law economically described by the LATER model, in which a decision signal rises linearly in response to information about a target to a threshold at which a response is initiated, at a rate that varies from trial to trial with a Gaussian distribution. Functionally, LATER may be regarded as an ideal decision mechanism(More)
This article presents SERIF, a new model of eye movement control in reading that integrates an established stochastic model of saccade latencies (LATER; R. H. S. Carpenter, 1981) with a fundamental anatomical constraint on reading: the vertically split fovea and the initial projection of information in either visual field to the contralateral hemisphere.(More)
Antisaccades are widely used in the study of voluntary behavioural control: a subject told to look in the opposite direction to a stimulus must suppress the automatic response of looking towards it, leading to delays and errors that are commonly believed to be generated by competing decision processes. However, currently we lack a precise model of the(More)
Our expectation of an event such as a visual stimulus clearly depends on previous experience, but how the brain computes this expectation is currently not fully understood. Because expectation influences the time to respond to a stimulus, we arranged for the probability of a visual target to suddenly change and found that the time taken to make an eye(More)
1. The contour-like phosphenes that may be seen with electrical stimulation of the human eye are described.2. It is found that a moving edge is particularly effective in generating these patterns.3. The relation between the velocity of the edge, the frequency of the current and the resultant spatial frequency of the lines is as if one line were generated at(More)