Roger B. J. Benson

Learn More
Birds are the most diverse living tetrapod group and are a model of large-scale adaptive radiation. Neontological studies suggest a radiation within the avian crown group, long after the origin of flight. However, deep time patterns of bird evolution remain obscure because only limited fossil data have been considered. We analyse cladogenesis and limb(More)
Previous attempts to resolve plesiosaurian phylogeny are reviewed and a new phylogenetic data set of 66 taxa (67% of ingroup taxa examined directly) and 178 characters (eight new) is presented. We recover two key novel results: a monophyletic Plesiosauridae comprising Plesiosaurus dolichodeirus, Hydrorion brachypterygius, Microcleidus homalospondylus,(More)
The Early Cretaceous fauna of Victoria, Australia, provides unique data on the composition of high latitude southern hemisphere dinosaurs. We describe and review theropod dinosaur postcranial remains from the Aptian-Albian Otway and Strzelecki groups, based on at least 37 isolated bones, and more than 90 teeth from the Flat Rocks locality. Several specimens(More)
Pliosaurids were a long-lived and cosmopolitan group of marine predators that spanned 110 million years and occupied the upper tiers of marine ecosystems from the Middle Jurassic until the early Late Cretaceous. A well-preserved giant pliosaurid skull from the Late Jurassic Kimmeridge Clay Formation of Dorset, United Kingdom, represents a new species,(More)
Pneumatic (air-filled) postcranial bones are unique to birds among extant tetrapods. Unambiguous skeletal correlates of postcranial pneumaticity first appeared in the Late Triassic (approximately 210 million years ago), when they evolved independently in several groups of bird-line archosaurs (ornithodirans). These include the theropod dinosaurs (of which(More)
Large-scale adaptive radiations might explain the runaway success of a minority of extant vertebrate clades. This hypothesis predicts, among other things, rapid rates of morphological evolution during the early history of major groups, as lineages invade disparate ecological niches. However, few studies of adaptive radiation have included deep time data, so(More)
Invasion of the open ocean by tetrapods represents a major evolutionary transition that occurred independently in cetaceans, mosasauroids, chelonioids (sea turtles), ichthyosaurs and plesiosaurs. Plesiosaurian reptiles invaded pelagic ocean environments immediately following the Late Triassic extinctions. This diversification is recorded by three(More)
The fossil record is our primary window onto the diversification of ancient life, but there are widespread concerns that sampling biases may distort observed palaeodiversity counts. Such concerns have been reinforced by numerous studies that found correlations between measures of sampling intensity and observed diversity. However, correlation does not(More)
The fossil record of crocodylians and their relatives (pseudosuchians) reveals a rich evolutionary history, prompting questions about causes of long-term decline to their present-day low biodiversity. We analyse climatic drivers of subsampled pseudosuchian biodiversity over their 250 million year history, using a comprehensive new data set. Biodiversity and(More)
The pterosaurs, Mesozoic flying reptiles, attained wingspans of more than 10 m that greatly exceed the largest birds and challenge our understanding of size limits in flying animals. Pterosaurs have been used to illustrate Cope's rule, the influential generalization that evolutionary lineages trend to increasingly large body sizes. However, unambiguous(More)