Rodrigo Weber dos Santos

Learn More
We have, in the last few years, witnessed the development and availability of an ever increasing number of computer models that describe complex biological structures and processes. The multi-scale and multi-physics nature of these models makes their development particularly challenging, not only from a biological or biophysical viewpoint but also from a(More)
The inclusion of nonconducting media, mimicking cardiac fibrosis, in two models of cardiac tissue produces the formation of ectopic beats. The fraction of nonconducting media in comparison with the fraction of healthy myocytes and the topological distribution of cells determines the probability of ectopic beat generation. First, a detailed subcellular(More)
Mechanical deformation affects the electrical activity of the heart through multiple feedback loops. The purpose of this work is to study the effect of deformation on transmural dispersion of repolarization and on surface electrograms using an in silico human ventricular wedge. To achieve this purpose, we developed a strongly coupled electromechanical cell(More)
The bidomain equations are widely used for the simulation of electrical activity in cardiac tissue. They are especially important for accurately modeling extracellular stimulation, as evidenced by their prediction of virtual electrode polarization before experimental verification. However, solution of the equations is computationally expensive due to the(More)
In experiments with cardiac tissue, local conduction is described by waveform analysis of the derivative of the extracellular potential Φ(e) and by the loop morphology of the near-field strength E (the components of the electric field parallel and very close to the tissue surface). The question arises whether the features of these signals can be used to(More)
The electrical activity of adult mouse and rat hearts has been analyzed extensively, often as a prerequisite for genetic engineering studies or for the development of rodent models of human diseases. Some aspects of the initiation and conduction of the cardiac action potential in rodents closely resemble those in large mammals. However, rodents have a much(More)
In this work we combine body surface potential map (BSPM) and magnetocardiogram (MCG) measurements with computer simulations in order to elucidate a recent thesis that claims the orthogonality of the main sources of MCG and ECG. Body surface currents and MCG pseudo currents are calculated from measured BSPM and MCG data, respectively. In contrast to the(More)
The cardiac Monodomain model is a mathematical model extensively used in studies of propagation of bioelectric wavefronts in the heart. To be able to use the model for complex and large cardiac simulations, such as the case of whole heart and 3D simulations, some parameters of the model that are known to physiologically vary in space, such as the(More)
In this work we present a new electromechanical cardiac myocyte model tailored to reproduce the electrical and force generating activities of human ventricular myocytes. The model was created by coupling two existing models: the ten Tusscher electrophysiology model and the Rice myofilament mechanics model. The parameters of the new model were adjusted in(More)
The use of computer models as a tool for the study and understanding of the complex phenomena of cardiac electrophysiology has attained increased importance nowadays. At the same time, the increased complexity of the biophysical processes translates into complex computational and mathematical models. To speed up cardiac simulations and to allow more precise(More)