Rodrigo Weber dos Santos

Learn More
The bidomain equations are considered to be one of the most complete descriptions of the electrical activity in cardiac tissue, but large scale simulations, as resulting from discretization of an entire heart, remain a computational challenge due to the elliptic portion of the problem, the part associated with solving the extracellular potential. In such(More)
Key aspects of cardiac electrophysiology, such as slow conduction, conduction block, and saltatory effects have been the research topic of many studies since they are strongly related to cardiac arrhythmia, reentry, fibrillation, or defibrillation. However, to reproduce these phenomena the numerical models need to use subcellular discretization for the(More)
The bidomain equations are widely used for the simulation of electrical activity in cardiac tissue but are computationally expensive, limiting the size of the problem which can be modeled. The purpose of this study is to determine more efficient ways to solve the elliptic portion of the bidomain equations, the most computationally expensive part of the(More)
The use of the GPU as a general purpose processor is becoming more popular and there are different approaches for this kind of programming. In this paper we present a comparison between different implementations of the OpenGL and CUDA approaches for solving our test case, a weighted Jacobi iteration with a structured matrix originating from a finite element(More)
The modeling of the electrical activity of the heart is of great medical and scientific interest, because it provides a way to get a better understanding of the related biophysical phenomena, allows the development of new techniques for diagnoses and serves as a platform for drug tests. The cardiac electrophysiology may be simulated by solving a partial(More)