Rodrigo Martinez-Duarte

Learn More
We introduce the integration of a novel dielectrophoresis (DEP)-assisted filter with a compact disk (CD)-based centrifugal platform. Carbon-electrode dielectrophoresis (carbon-DEP) refers to the use of carbon electrodes to induce DEP. In this work, 3D carbon electrodes are fabricated using the C-MEMS technique and are used to implement a DEP-enabled active(More)
Dielectrophoresis (DEP) represents a powerful approach to manipulate and study living cells. Hitherto, several approaches have used 2-D DEP chips. With the aim to increase sample volume, in this study we used a 3-D carbon-electrode DEP chip to trap and release bacterial cells. A continuous flow was used to plug an Escherichia coli cell suspension first, to(More)
Carbon-electrode dielectrophoresis (carbon-DEP) is demonstrated here as an alternative to more traditional DEP techniques. Carbon-DEP combines advantages of metal-electrode and insulator-based DEP by using low-cost fabrication techniques and low voltages for particle manipulation. The use of 3-D electrodes is proved to yield significant advantages over the(More)
DEP is an established technique for particle manipulation. Although first demonstrated in the 1950s, it was not until the development of miniaturization techniques in the 1990s that DEP became a popular research field. The 1990s saw an explosion of DEP publications using microfabricated metal electrode arrays to sort a wide variety of cells. The concurrent(More)
Carbon electrodes have recently been introduced as an alternative to metal electrodes and insulator structures for dielectrophoretic applications. Here, an experimental and theoretical study employing an array of 3D carbon electrodes contained in a microfluidic channel for the dielectrophoretic manipulation of DNA is presented. First evidence that(More)
Persistence of bacteria during antibiotic therapy is a widespread phenomenon, of particular importance in refractory mycobacterial infections such as leprosy and tuberculosis. Persistence is characterized by the phenotypic tolerance of a subpopulation of bacterial cells to antibiotics. Characterization of these "persister" cells is often difficult due to(More)
Here we describe a novel method for Bulk Metallic Glass (BMG) micro molding using carbon templates obtained from pyrolyzed SU-8 photoresist. BMGs refer to a class of metal alloys which exhibit high strength, large elastic strain limit, and high corrosion resistance owing to their amorphous nature. They are isotropic, homogeneous, and free from any(More)
Dielectrophoresis (DEP) is a powerful tool to manipulate cells and molecules in microfluidic chips. However, few practical applications using DEP exist. An immediate practical application of a carbon-electrode DEP system, in removing PCR inhibitors from a sample, is reported in this work. We use a high throughput carbon-electrode DEP system to trap yeast(More)
Since its inception, Compact Disc (CD)-based centrifugal microfluidic technology has drawn a great deal of interest within research communities due to its potential use in biomedical applications. The technology has been referred to by different names, including compact-disc microfluidics, lab-on-a-disk, lab-on-a-CD and bio-disk. This paper critically(More)
Biomimetics often provides efficient ways to create a product incorporating novel properties. Here we present the replication of the Pieris rapae butterfly optical structure. This butterfly has white wings with black spots. The white coloration is produced by light scattering on pterin beads ranging from 100 to 500 nm whereas black spots correspond to areas(More)