Rodrigo Martinez-Duarte

Learn More
We introduce the integration of a novel dielectrophoresis (DEP)-assisted filter with a compact disk (CD)-based centrifugal platform. Carbon-electrode dielectrophoresis (carbon-DEP) refers to the use of carbon electrodes to induce DEP. In this work, 3D carbon electrodes are fabricated using the C-MEMS technique and are used to implement a DEP-enabled active(More)
Carbon electrodes have recently been introduced as an alternative to metal electrodes and insulator structures for dielectrophoretic applications. Here, an experimental and theoretical study employing an array of 3D carbon electrodes contained in a microfluidic channel for the dielectrophoretic manipulation of DNA is presented. First evidence that(More)
Here we describe a novel method for Bulk Metallic Glass (BMG) micro molding using carbon templates obtained from pyrolyzed SU-8 photoresist. BMGs refer to a class of metal alloys which exhibit high strength, large elastic strain limit, and high corrosion resistance owing to their amorphous nature. They are isotropic, homogeneous, and free from any(More)
DEP is an established technique for particle manipulation. Although first demonstrated in the 1950s, it was not until the development of miniaturization techniques in the 1990s that DEP became a popular research field. The 1990s saw an explosion of DEP publications using microfabricated metal electrode arrays to sort a wide variety of cells. The concurrent(More)
Carbon-electrode dielectrophoresis (carbon-DEP) is demonstrated here as an alternative to more traditional DEP techniques. Carbon-DEP combines advantages of metal-electrode and insulator-based DEP by using low-cost fabrication techniques and low voltages for particle manipulation. The use of 3-D electrodes is proved to yield significant advantages over the(More)
Persistence of bacteria during antibiotic therapy is a widespread phenomenon, of particular importance in refractory mycobacterial infections such as leprosy and tuberculosis. Persistence is characterized by the phenotypic tolerance of a subpopulation of bacterial cells to antibiotics. Characterization of these "persister" cells is often difficult due to(More)
Dielectrophoresis (DEP) represents a powerful approach to manipulate and study living cells. Hitherto, several approaches have used 2-D DEP chips. With the aim to increase sample volume, in this study we used a 3-D carbon-electrode DEP chip to trap and release bacterial cells. A continuous flow was used to plug an Escherichia coli cell suspension first, to(More)
Here we present an electrical lysis throughput of 600 microliters per minute at high cell density (10 yeast cells per ml) with 90% efficiency, thus improving the current common throughput of one microliter per minute. We also demonstrate the extraction of intracellular luciferase from mammalian cells with efficiency comparable to off-chip bulk chemical(More)
The use of SU-8 as precursor for glass-like carbon, or glassy carbon, is presented here. SU-8 carbonizes when subject to high temperature under inert atmosphere. Although epoxy-based precursors can be patterned in a variety of ways, photolithography is chosen due to its resolution and reproducibility. Here, a number of improvements to traditional(More)
Dielectrophoresis (DEP) is a powerful tool to manipulate cells and molecules in microfluidic chips. However, few practical applications using DEP exist. An immediate practical application of a carbon-electrode DEP system, in removing PCR inhibitors from a sample, is reported in this work. We use a high throughput carbon-electrode DEP system to trap yeast(More)