Rodrigo Ledesma-Amaro

Learn More
Identifying the mechanisms of eukaryotic genome evolution by comparative genomics is often complicated by the multiplicity of events that have taken place throughout the history of individual lineages, leaving only distorted and superimposed traces in the genome of each living organism. The hemiascomycete yeasts, with their compact genomes, similar(More)
The yeast Yarrowialipolytica has developed very efficient mechanisms for breaking down and using hydrophobic substrates. It is considered an oleaginous yeast, based on its ability to accumulate large amounts of lipids. Completion of the sequencing of the Y.lipolytica genome and the existence of suitable tools for genetic manipulation have made it possible(More)
A genomic comparison of Yarrowia lipolytica and Saccharomyces cerevisiae indicates that the metabolism of Y. lipolytica is oriented toward the glycerol pathway. To redirect carbon flux toward lipid synthesis, the GUT2 gene, which codes for the glycerol-3-phosphate dehydrogenase isomer, was deleted in Y. lipolytica in this study. This Delta gut2 mutant(More)
Strains and vectors for protein expression and secretion have been developed in the yeast Yarrowia lipolytica. Host strains were constructed with non-reverting auxotrophic markers, deletions of protease-encoding genes, and carrying a docking platform. To drive transcription, either the synthetic hp4d or the inducible POX2 promoter were used. Protein(More)
The oleaginous yeast Yarrowia lipolytica is known to inhabit various lipid-containing environments. One of the most striking features in this yeast is the presence of several multigene families involved in the metabolic pathways of hydrophobic substrate utilization. The complexity and the multiplicity of these genes give Y. lipolytica a wide capability(More)
High energy prices, depletion of crude oil supplies, and price imbalance created by the increasing demand of plant oils or animal fat for biodiesel and specific lipid derivatives such as lubricants, adhesives, and plastics have given rise to heated debates on land-use practices and to environmental concerns about oil production strategies. However,(More)
Few selective markers are available for the transformation of the industrial yeast Yarrowia lipolytica, and those that are require the use of specialized hosts (e.g., auxotrophs, antibiotic sensitive). To enable the transformation of any Y. lipolytica strain, we used the property that Y. lipolytica cannot use sucrose as a sole carbon source. We have(More)
The non-conventional yeast Yarrowia lipolytica produces an extracellular lipase encoded by the LIP2 gene. Mutant strains with enhanced productivity were previously obtained either by chemical mutagenesis or genetic engineering. In this work, we used one of these mutants, named LgX64.81 to select new overproducing strains following by amplification of the(More)
Lipid particles (LP) of all types of cells are a depot of neutral lipids. The present investigation deals with the isolation of LP from the yeast Yarrowia lipolytica and the characterization of their lipid and protein composition. Properties of LP varied depending on the carbon source. LP from glucose-grown cells revealed a mean diameter of 650 nm with a(More)
The yeast Yarrowia lipolytica presents specific physiological, metabolic and genomic characteristics, which differentiate it from the model yeast Saccharomyces cerevisiae. These properties have led several research groups to use this yeast as a model for basic knowledge. Thanks to the development of advanced genetic tools and -omic approaches, significant(More)