Learn More
Several molecules have been proposed as excitatory transmitters between glomus (type 1) cells and nerve terminals of petrosal ganglion (PG) neurons in the carotid body (CB). We tested whether ACh and ATP have a role to play as excitatory transmitters in the cat CB by recording intracellularly from identified PG neurons functionally connected to the CB in(More)
The effects of domperidone, antagonist of D2 receptors, on arterial chemoreceptor activity were studied in spontaneously breathing and pentobarbitone anesthetized cats, in which recordings of chemosensory impulse activity were obtained simultaneously from both cut carotid (sinus) nerves. Intravenous injections of domperidone 50 micrograms/kg produced a(More)
1. To examine the correlation between chemosensory response and dopamine release induced by hypoxic stimulation, we studied carotid bodies excised from anaesthetized cats. 2. The carotid bodies with their carotid (sinus) nerves were superfused in vitro with modified Tyrode solution (pH 7.40, at 37.5 degrees C) equilibrated with 20 or 100% O2. The PO2 of the(More)
We have recently reported that application of acetylcholine (ACh) or nicotine to the petrosal ganglion-the sensory ganglion of the glossopharyngeal nerve-elicits a burst of discharges in the carotid nerve branch, innervating the carotid body and sinus, but not in the glossopharyngeal branch, innervating the tongue and pharynx. Thus, the perikarya of sensory(More)
NaCN is a classical stimulus used to elicit discharges from carotid body chemoreceptors. The effect is assumed to be mediated by glomus (type I) cells, which release an excitatory transmitter for the excitation of carotid nerve endings. Since the sensory perikarya of the glossopharyngeal nerve (from which the carotid nerve branches) are located in the(More)
The carotid body (CB) is the main arterial chemoreceptor. The most accepted model of arterial chemoreception postulates that carotid body glomus (type I) cells are the primary receptors, which are synaptically connected to the nerve terminals of petrosal ganglion (PG) neurons. In response to natural stimuli, glomus cells are expected to release one (or(More)
Hypoxia modulates proliferation and differentiation of cultured embryonic and adult stem cells, an effect that includes β-catenin, a key component of the canonical Wnt signaling pathway. Here we studied the effect of mild hypoxia on the activity of the Wnt/β-catenin signaling pathway in the hippocampus of adult mice in vivo. The hypoxia-inducible(More)
Chronic intermittent hypoxia (CIH) enhances carotid body (CB) chemosensory responses to acute hypoxia. We tested the hypothesis that endothelin-1 (ET-1), an excitatory modulator of CB chemoreception may contribute to the enhanced CB chemosensory responses in cats exposed to cyclic hypoxic episodes repeated during 8 h for 4 days. Accordingly, we measured the(More)
The petrosal ganglion innervates carotid body chemoreceptors through the carotid (sinus) nerve. These primary sensory neurons are activated by transmitters released from receptor (glomus) cells, acetylcholine (ACh) having been proposed as one of the transmitters involved in this process. Since the perikarya of primary sensory neurons share several(More)