Rodrigo Cabral Farias

Learn More
In signal processing, tensor decompositions have gained in popularity this last decade. In the meantime, the volume of data to be processed has drastically increased. This calls for novel methods to handle Big Data tensors. Since most of these huge data are issued from physical measurements, which are intrinsically real nonnegative, being able to compress(More)
—In this paper, adaptive estimation based on noisy quantized observations is studied. A low complexity adaptive algorithm using a quantizer with adjustable input gain and offset is presented. Three possible scalar models for the parameter to be estimated are considered: constant, Wiener process and Wiener process with deterministic drift. After showing that(More)
A Bayesian framework is proposed to define flexible coupling models for joint tensor decompositions of multiple datasets. Under this framework, a natural formulation of the data fusion problem is to cast it in terms of a joint maximum a posteriori (MAP) estimator. Data-driven scenarios of joint posterior distributions are provided, including general(More)
Estimation of a location parameter based on noisy and binary quantized measurements is considered in this letter. We study the behavior of the Cramér-Rao bound as a function of the quantizer threshold for different symmetric unimodal noise distributions. We show that, in some cases, the intuitive choice of threshold position given by the symmetry of(More)
HAL is a multidisciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt età la diffusion(More)
In this paper, the asymptotic approximation of the Fisher information for the estimation of a scalar parameter based on quantized measurements is studied. As the number of quantization intervals tends to infinity, it is shown that the loss of Fisher information due to quantization decreases exponentially as a function of the number of quantization bits. The(More)
An adaptive algorithm to estimate jointly unknown location and scale parameters of a sequence of symmetrically distributed independent and identically distributed random variables using quantized measurements from a quantizer with adjustable input gain and input offset is presented. The asymptotic variance of estimation is obtained, simulations under Cauchy(More)
In this paper, we study an asymptotic approximation of the Fisher information for the estimation of a scalar parameter using quantized measurements. We show that, as the number of quantization intervals tends to infinity, the loss of Fisher information induced by quantization decreases exponentially as a function of the number of quantization bits. A(More)
In this paper we describe an estimator for the canonical polyadic (CP) tensor model using order statistics of the residuals. The estimator minimizes in an iterative and alternating fashion a dispersion function given by the weighted ranked absolute residuals. Specific choices of the weights lead to either equivalent or approximate versions of the least(More)