Learn More
—This paper presents a survey of evolutionary algorithms designed for decision tree induction. In this context, most of the paper focuses on approaches that evolve decision trees as an alternate heuristics to the traditional top-down divide-and-conquer approach. Additionally, we present some alternative methods that make use of evolutionary algorithms to(More)
Hierarchical Multi-label Classification (HMC) is a classification task where classes are organized in a hierarchical taxonomy, and instances can be simultaneously classified in more than one class. This paper investigates the HMC problem of classifying proteins in functions organized according to the Gene Ontology hierarchical taxonomy. This is a complex(More)
Data stream mining is an active research area that has recently emerged to discover knowledge from large amounts of continuously generated data. In this context, several data stream clustering algorithms have been proposed to perform unsupervised learning. Nevertheless, data stream clustering imposes several challenges to be addressed, such as dealing with(More)
Model trees are a particular case of decision trees employed to solve regression problems. They have the advantage of presenting an interpretable output, helping the end-user to get more confidence in the prediction and providing the basis for the end-user to have new insight about the data, confirming or rejecting hypotheses previously formed. Moreover,(More)
Decision trees are widely disseminated as an effective solution for classification tasks. Decision tree induction algorithms have some limitations though, due to the typical strategy they implement: recursive top-down partitioning through a greedy split evaluation. This strategy is limiting in the sense that there is quality loss while the partitioning(More)
Among the several tasks that evolutionary algorithms have successfully employed, the induction of classification rules and decision trees has been shown to be a relevant approach for several application domains. Decision tree induction algorithms represent one of the most popular techniques for dealing with classification problems. However, conventionally(More)
Hierarchical Multi-Label Classification is a complex classification task where the classes involved in the problem are hierarchically structured and each example may simultaneously belong to more than one class in each hierarchical level. In this paper, we extend our previous works, where we investigated a new local-based classification method that(More)
Decision tree induction is one of the most employed methods to extract knowledge from data, since the representation of knowledge is very intuitive and easily understandable by humans. The most successful strategy for inducing decision trees, the greedy top-down approach, has been continuously improved by researchers over the years. This work, following(More)
Decision tree induction algorithms are widely used in knowledge discovery and data mining, specially in scenarios where model comprehensibility is desired. A variation of the traditional univariate approach is the so-called oblique decision tree, which allows multivariate tests in its non-terminal nodes. Oblique decision trees can model decision boundaries(More)
Model trees are a particular case of decision trees employed to solve regression problems. They have the advantage of presenting an interpretable output with an acceptable level of predictive performance. Since generating optimal model trees is a NP-Complete problem, the traditional model tree induction algorithms make use of a greedy heuristic, which may(More)