Learn More
Parkinson's disease is a neurodegenerative disorder with uncertain aetiology and ill-defined pathophysiology. Activated microglial cells in the substantia nigra (SN) are found in all animal models of Parkinson's disease and patients with the illness. Microglia may, however, have detrimental and protective functions in this disease. In this study, we tested(More)
The functional role of the long-lasting inflammation found in the substantia nigra (SN) of Parkinson's disease (PD) patients and animal models is unclear. Proinflammatory cytokines such as interleukin-1beta (IL-1beta) could be involved in mediating neuronal demise. However, it is unknown whether the chronic expression of cytokines such as IL-1beta in the SN(More)
Peripheral inflammation triggers exacerbation in the central brain's ongoing damage in several neurodegenerative diseases. Systemic inflammatory stimulus induce a general response known as sickness behaviour, indicating that a peripheral stimulus can induce the synthesis of cytokines in the brain. In Parkinson's disease (PD), inflammation was mainly(More)
Cerebral amyloid β (Aβ) accumulation is pathogenically associated with sporadic Alzheimer's disease (SAD). BACE-1 is involved in Aβ generation while insulin-degrading enzyme (IDE) partakes in Aβ proteolytic clearance. Vulnerable regions in AD brains show increased BACE-1 protein levels and enzymatic activity while the opposite occurs with IDE. Another(More)
An appropriate inflammatory response is crucial for the maintenance of tissue homeostasis. The inflammatory responses seen in the brain parenchyma differ from those elicited in the periphery, ventricles and meninges. However, although an inflammatory component has been associated with many CNS diseases, the differences among parenchymal inflammatory(More)
  • 1