Learn More
1. Intradendritic recordings from Purkinje cells in vitro indicate that white matter stimulation produces large synaptic responses by the activation of the climbing fibre afferent, but antidromic potentials do not actively invade the dendritic tree. 2. Climbing fibre responses may be reversed in a manner similar to that observed at the somatic level.(More)
Spontaneous magnetoencephalographic activity was recorded in awake, healthy human controls and in patients suffering from neurogenic pain, tinnitus, Parkinson's disease, or depression. Compared with controls, patients showed increased low-frequency theta rhythmicity, in conjunction with a widespread and marked increase of coherence among high- and(More)
The ionic requirements for electro-responsiveness in thalamic neurones were studied using in vitro slice preparations of the guinea-pig diencephalon. Analysis of the current-voltage relationship in these neurones revealed delayed and anomalous rectification. Substitution of Na+ with choline in the bath or addition of tetrodotoxin (TTX) abolished the fast(More)
1. The electrical activity of Purkinje cells was studied in guinea-pig cerebellar slices in vitro. Intracellular recordings from Purkinje cell somata were obtained under direct vision, and antidromic, synaptic and direct electroresponsiveness was demonstrated. Synaptic potentials produced by the activation of the climbing fibre afferent could be reversed by(More)
The electroresponsive properties of guinea-pig thalamic neurones were studied using an in vitro slice preparation. A total of 650 cells were recorded intracellularly comprising all regions of the thalamus; of these 229 fulfilled our criterion for recording stability and were used as the data base for this report. The resting membrane potential for(More)
This article reviews the electroresponsive properties of single neurons in the mammalian central nervous system (CNS). In some of these cells the ionic conductances responsible for their excitability also endow them with autorhythmic electrical oscillatory properties. Chemical or electrical synaptic contacts between these neurons often result in network(More)
The relationship between calcium current and transmitter release was studied in squid giant synapse. It was found that the voltage-dependent calcium current triggers the release of synaptic transmitter in direct proportion to its magnitude and duration. Transmitter release occurs with a delay of approximately 200 mus after the influx of calcium. A model is(More)
Magnetic recording from five normal human adults demonstrates large 40-Hz coherent magnetic activity in the awake and in rapid-eye-movement (REM) sleep states that is very reduced during delta sleep (deep sleep characterized by delta waves in the electroencephalogram). This 40-Hz magnetic oscillation has been shown to be reset by sensory stimuli in the(More)
This article addresses the functional significance of the electrophysiological properties of thalamic neurons. We propose that thalamocortical activity, is the product of the intrinsic electrical properties of the thalamocortical (TC) neurons and the connectivity their axons weave. We begin with an overview of the electrophysiological properties of single(More)
The oscillatory properties of the membrane potential in inferior olivary neurones were studied in guinea-pig brain-stem slices maintained in vitro. Intracellular double-ramp current injection at frequencies of 1-20 Hz revealed that inferior olivary neurones tend to fire at two preferred frequencies: 3-6 Hz when the cells were actively depolarized (resting(More)