Rodolfo Pellizzoni

Learn More
Shared resource access interference, particularly memory and system bus, is a big challenge in designing predictable real-time systems because its worst case behavior can significantly differ. In this paper, we propose a software based memory throttling mechanism to explicitly control the memory interference. We developed analytic solutions to compute(More)
Building safety-critical real-time systems out of inexpensive, non-real-time, COTS components is challenging. Although COTS components generally offer high performance, they can occasionally incur significant timing delays. To prevent this, we propose controlling the operating point of each shared resource (like the cache, memory, and interconnection buses)(More)
Employing COTS components in real-time embedded systems leads to timing challenges. When multiple CPU cores and DMA peripherals run simultaneously, contention for access to main memory can greatly increase a task's WCET. In this paper, we introduce an analysis methodology that computes upper bounds to task delay due to memory contention. First, an arrival(More)
Memory bandwidth in modern multi-core platforms is highly variable for many reasons and is a big challenge in designing real-time systems as applications are increasingly becoming more memory intensive. In this work, we proposed, designed, and implemented an efficient memory bandwidth reservation system, that we call MemGuard. MemGuard distinguishes memory(More)
DRAM consists of multiple resources called banks that can be accessed in parallel and independently maintain state information. In Commercial Off-The-Shelf (COTS) multicore platforms, banks are typically shared among all cores, even though programs running on the cores do not share memory space. In this situation, memory performance is highly unpredictable(More)
In this paper we address the problem of schedulability analysis of distributed real-time transactions under EDF, where each transaction is a chain of precedence constrained tasks. We propose a new efficient methodology and a set of algorithms that explicitly take into account the offsets of the transactions. We show, with an extensive set of simulations,(More)
COTS peripherals are heavily used in the embedded market, but their unpredictability is a threat for high-criticality real-time systems: it is hard or impossible to formally verify COTS components. Instead, we propose to monitor the runtime behavior of COTS peripherals against their assumed specifications. If violations are detected, then an appropriate(More)
The problem of feasibility analysis of asynchronous periodic task sets, where tasks can have an initial offset, is known to be co-NP-complete in the strong sense. A sufficient pseudo-polynomial test has been proposed by Baruah, Howell and Rosier, which consists in analyzing the feasibility of the corresponding synchronous task set (i.e. all offsets are set(More)
Prioritized MAC protocols are needed to support soft real-time communication in wireless networks. In this paper, we introduce real-time chain, a new prioritized MAC protocol to support soft real-time data flows in multi-hop wireless ad-hoc networks. By avoiding packet collisions and limiting the effect of priority inversions, real-time chain is able to(More)