Rodolfo Moreno-Maldonado

Learn More
Squamous cell carcinomas (SCCs) of the skin display different clinical features according to their epithelial differentiation grade and histological variant. Understanding the causes of these divergences might increase the curability of SCCs. Therefore, it is important to study the mechanisms of differentiation in keratinocytes. IKK (IkappaB kinase) alpha(More)
Non-melanoma skin cancer is the most frequent type of cancer in humans. In this study we demonstrate that elevated IKKα expression in murine epidermis increases the malignancy potential of skin tumors. We describe the generation of transgenic mice overexpressing IKKα in the basal, proliferative layer of the epidermis and in the outer root sheath of hair(More)
In this study, we demonstrate that the expression in tumorigenic epidermal cells of a catalytically inactive form of CYLD (CYLD(C/S)) that mimics the identified mutations of cyld in human tumors and competes with the endogenous CYLD results in enhanced cell proliferation and inhibition of apoptosis; it also stimulates cell migration and induces the(More)
CYLD is a gene mutated in familial cylindromatosis and related diseases, leading to the development of skin appendages tumors. Although the deubiquitinase CYLD is a skin tumor suppressor, its role in skin physiology is unknown. Using skin organotypic cultures as experimental model to mimic human skin, we have found that CYLD acts as a regulator of epidermal(More)
Inhibition of gene expression through siRNAs is a tool increasingly used for the study of gene function in model systems, including transgenic mice. To achieve perdurable effects, the stable expression of siRNAs by an integrated transgenic construct is necessary. For transgenic siRNA expression, promoters transcribed by either RNApol II or III (such as U6(More)
IKKα plays a mandatory role in keratinocyte differentiation and exerts an important task in non-melanoma skin cancer development. However, it is not fully understood how IKKα exerts these functions. To analyze in detail the role of IKKα in epidermal stratification and differentiation, we have generated tridimensional (3D) cultures of human HaCaT(More)
  • 1