Rodolfo Lavilla

Learn More
Unsaturated lactams with endo- or exocyclic C-C double bonds constitute a set of reactive inputs that serve as the electron-rich olefin component in Povarov reactions. These substrates afford the multicomponent adducts in convenient yields and offer a wide range of structural diversity. Postcondensation transformations allow direct access to a variety of(More)
The tetrahydroquinolines obtained through the Povarov multicomponent reaction have been oxidized to the corresponding quinoline, giving access to a single product through a two-step sequence. Several oxidizing agents were studied and manganese dioxide proved to be the reagent of choice, affording higher yields, cleaner reactions and practical protocols.
Multiple-specificity ligands are considered promising pharmacological tools that may show higher efficacy in the treatment of diseases for which the modulation of a single target is therapeutically inadequate. We prepared a set of novel ligands for D1 and D2 dopamine receptors by combining two indolo[2,3-a]quinolizidine scaffolds with various tripeptide(More)
Heterocycles display an intrinsic reactivity which enables rich, versatile and productive transformations. Taking into account their ubiquitous presence in natural products and drugs, the development of new, fast and efficient preparative protocols for these structures remains an urgent task in Organic Synthesis. Multicomponent reactions using heterocyclic(More)
Tryptophan (Trp) and tryptophan derivatives are C2-arylated. A C-H activation process allows the preparation of both protected and unprotected arylated-Trp amino acids, directly from the amino acid precursor and aryl iodides. The obtained compounds are suitable for standard solid-phase peptide synthesis.
The three-component reaction of dihydropyridines, aldehydes, and p-methylaniline efficiently forms highly substituted tetrahydroquinolines in a stereoselective manner through a Lewis acid-catalyzed formal [4 + 2] cycloaddition. InCl(3) and Sc(OTf)(3) are the catalysts of choice for this process. The in situ generation of a reactive 1,4-dihydropyridine(More)
Prolyl oligopeptidase (POP) is a cytosolic serine peptidase that hydrolyzes proline-containing peptides at the carboxy terminus of proline residues. This peptidase has gained importance as a target for the treatment of cognitive disturbances of patients with neuropsychiatric diseases. Our research addresses the identification of POP inhibitors from a small(More)