Learn More
Soil microorganisms are critical players in plant-soil interactions at the rhizosphere. We have identified a Bacillus megaterium strain that promoted growth and development of bean (Phaseolus vulgaris) and Arabidopsis thaliana plants. We used Arabidopsis thaliana as a model to characterize the effects of inoculation with B. megaterium on plant-growth(More)
Medicago truncatula represents a model plant species for understanding legume–bacteria interactions. M. truncatula roots form a specific root–nodule symbiosis with the nitrogen-fixing bacterium Sinorhizobium meliloti. Symbiotic nitrogen fixation generates high iron (Fe) demands for bacterial nitrogenase holoenzyme and plant leghemoglobin proteins.(More)
We looked for bacterial strains with antifungal activity in the sorghum rhizosphere. A prescreening procedure to search for hemolytic activity among the isolated strains allowed us to detect good fungitoxic activity in a bacterial isolate that we named UM96. This bacterial isolate showed strong growth inhibition in bioassays against the pathogens(More)
The nitrogen-fixing bacteria commonly known as rhizobia are attractive organisms due to their symbiotic association with legume plants. Their genomes contain a large number of redundant genetic elements. These reiterations might participate in homologous recombination events and lead to diverse genomic rearrangements. Here we analyze the role of homologous(More)
Studies on Rhizobium-legume symbiosis show that trehalose content in nodules under drought stress correlates positively with an increase in plant tolerance to this stress. Fewer reports describe trehalose accumulation in mycorrhiza where, in contrast with rhizobia, there is no flux of carbohydrates from the microsymbiont to the plant. However, the trehalose(More)
Myrmecophytic Acacia species produce food bodies (FBs) to nourish ants of the Pseudomyrmex ferrugineus group, with which they live in an obligate mutualism. We investigated how the FBs are protected from exploiting nonmutualists. Two-dimensional gel electrophoresis of the FB proteomes and consecutive protein sequencing indicated the presence of several(More)
Iron (Fe) is an essential element for plant growth. Commonly, this element is found in an oxidized form in soil, which is poorly available for plants. Therefore, plants have evolved ferric-chelate reductase enzymes (FRO) to reduce iron into a more soluble ferrous form. Fe scarcity in plants induce the FRO enzyme activity. Although the legume Medicago(More)
  • 1