Learn More
DNA repair is an essential process for preserving genome integrity in all organisms. In eukaryotes, recombinational repair is choreographed by multiprotein complexes that are organized into centers (foci). Here, we analyze the cellular response to DNA double-strand breaks (DSBs) and replication stress in Saccharomyces cerevisiae. The Mre11 nuclease and the(More)
Gene conversion is the nonreciprocal transfer of information from one DNA duplex to another; in meiosis, it is frequently associated with crossing-over. We review the genetic properties of meiotic recombination and previous models of conversion and crossing-over. In these models, recombination is initiated by single-strand nicks, and heteroduplex DNA is(More)
The Holliday junction recombination intermediate, an X-shaped DNA molecule (xDNA), was analyzed at rDNA in mitotically growing yeast. In wild-type cells, xDNA is only detected at S phase, suggesting that recombination is stimulated to repair replication-related lesions. A search for mutations that increase the level of xDNA uncovered a gene encoding a(More)
An open question in meiosis is whether the Rad51 recombination protein functions solely in meiotic recombination or whether it is also involved in the chromosome homology search. To address this question, we have performed three-dimensional high-resolution immunofluorescence microscopy to visualize native Rad51 structures in maize male meiocytes. Maize has(More)
Mutation and subsequent recombination events create genetic diversity, which is subjected to natural selection. Bacterial mismatch repair (MMR) deficient mutants, exhibiting high mutation and homologous recombination rates, are frequently found in natural populations. Therefore, we have explored the possibility that MMR deficiency emerging in nature has(More)
In eukaryotes, DNA damage elicits a multifaceted response that includes cell cycle arrest, transcriptional activation of DNA repair genes, and, in multicellular organisms, apoptosis. We demonstrate that in Saccharomyces cerevisiae, DNA damage leads to a 6- to 8-fold increase in dNTP levels. This increase is conferred by an unusual, relaxed dATP feedback(More)
A hyper-recombination mutation was isolated that causes an increase in recombination between short repeated delta sequences surrounding the SUP4-omicron gene in S. cerevisiae. The wild-type copy of this gene was cloned by complementation of one of its pleiotropic phenotypes, slow growth. DNA sequence of the clone revealed a 656 amino acid open reading frame(More)
Homology-dependent exchange of genetic information between DNA molecules has a profound impact on the maintenance of genome integrity by facilitating error-free DNA repair, replication, and chromosome segregation during cell division as well as programmed cell developmental events. This chapter will focus on homologous mitotic recombination in budding yeast(More)
Asymmetric cell division is of fundamental importance in biology as it allows for the establishment of separate cell lineages during the development of multicellular organisms. Although microbial systems, including the yeast Saccharomyces cerevisiae, are excellent models of asymmetric cell division, this phenotype occurs in all cell divisions; consequently,(More)