Rodney James Irvine

Learn More
A large body of data indicates that (+/-)3,4-methylenedioxymethamphetamine (MDMA, 'ecstasy') can damage brain serotonin neurons in animals. However, the relevance of these preclinical data to humans is uncertain, because doses and routes of administration used in animals have generally differed from those used by humans. Here, we examined the(More)
RATIONALE 3,4-Methylenedioxymethamphetamine (MDMA, "ecstasy") disrupts thermoregulation in rats and can lead to life-threatening hyperthermia in humans. MDMA administration can also lead to long-term neurotoxicity in animals and possibly humans. OBJECTIVES The purpose of the current study was to extend previous results on the acute effects of MDMA on(More)
1. This study was prompted by recent deaths that have occurred after recreational administration of the substituted amphetamine para-methoxyamphetamine (PMA). Because relatively little is known regarding its mechanism(s) of action, its effects on physiological, behavioural and neurochemical parameters were compared with the well known effects of(More)
Illicit use of p-methoxyamphetamine (PMA) is rapidly increasing. However, little is known about the acute effects of PMA on neurotransmission in vivo. High-speed chronoamperometry was used to monitor neurotransmitter release and clearance in anesthetized rats after local application of PMA or 3,4-methylenedioxymethamphetamine (MDMA). In striatum, PMA caused(More)
Spontaneously hypertensive rats (SHRs) rats have been reported to have decreased sensitivity to pain, but as yet a mechanism has not been identified. This study investigated the effects of subcutaneous and intracerebroventricular (ICV) infusions of angiotensin II on blood pressure, locomotor activity, and tailflick and hot plate latencies in the(More)
Ingestion of MDMA ("ecstasy") by humans can cause acute toxicity manifested by hyperthermia and death. Demethylenation of MDMA is catalyzed by cytochrome P-450 2D6 (CYP2D6) and cytochrome P-450 2D1 (CYP2D1) in humans and rats, respectively, and is polymorphically expressed. It has been proposed that CYP2D6 deficiency may account for the unexplained toxicity(More)
p-Methoxyamphetamine (PMA) has been implicated in fatalities as a result of 'ecstasy' (MDMA) overdose worldwide. Like MDMA, acute effects are associated with marked changes in serotonergic neurotransmission, but the long-term effects of PMA are poorly understood. The aim of this study was to determine the effect of repeated PMA administration on in vitro(More)
3,4-Methylenedioxymethamphetamine (MDMA, "ecstasy") and para-methoxyamphetamine (PMA) are commonly used recreational drugs. PMA, often mistaken for MDMA, is reported to be more toxic in human use than MDMA. Both of these drugs have been shown to facilitate the release and prevent the reuptake of 5-hydroxytryptamine (5-HT, serotonin). PMA is also a potent(More)
Naloxone and naloxone methiodide both act on opioid receptors but naloxone methiodide has limited access to the brain. Naloxone methiodide has been shown to have a lower affinity for opioid receptors than naloxone in the rat and guinea pig but has not been tested in the mouse. We aimed to investigate this by using [3H]DAMGO, [3H]DPDPE and [3H]U-69,593 to(More)