Learn More
The human arylamine N-acetyltransferases first attracted attention because of their role in drug metabolism. However, much of the current literature has focused on their role in the activation and detoxification of environmental carcinogens and how genetic polymorphisms in the genes create predispositions to increased or decreased cancer risk. There are two(More)
Dopamine neurotoxicity is associated with several neurodegenerative diseases, and neurons utilize several mechanisms, including uptake and metabolism, to protect them from injury. Metabolism of dopamine involves three enzymes: monoamine oxidase, catechol O-methyltransferase, and sulfotransferase. In primates but not lower order animals, a sulfotransferase(More)
This paper describes a novel system for automatic classification of images obtained from Anti-Nuclear Antibody (ANA) pathology tests on Human Epithelial type 2 (HEp-2) cells using the Indirect Immunofluores-cence (IIF) protocol. The IIF protocol on HEp-2 cells has been the hallmark method to identify the presence of ANAs, due to its high sensitivity and the(More)
Drug resistance continues to be a major barrier to the delivery of curative therapies in cancer. Historically, drug resistance has been associated with over-expression of drug transporters, changes in drug kinetics or amplification of drug targets. However, the emergence of resistance in patients treated with new-targeted therapies has provided new insight(More)
Arylamine N-acetyltransferase-1 (NAT1) is an enzyme that catalyzes the biotransformation of arylamine and hydrazine substrates. It also has a role in the catabolism of the folate metabolite p-aminobenzoyl glutamate. Recent bioinformatics studies have correlated NAT1 expression with various cancer subtypes. However, a direct role for NAT1 in cell biology has(More)
Epidemiologic studies have suggested that aromatic amines (and nitroaromatic hydrocarbons) may be carcinogenic for human pancreas. Pancreatic tissues from 29 organ donors (13 smokers, 16 non-smokers) were examined for their ability to metabolize aromatic amines and other carcinogens. Microsomes showed no activity for cytochrome P450 (P450) 1A2-dependent(More)
Structurally related tetratricopeptide repeat motifs in steroid receptor-associated immunophilins and the STI1 homolog, Hop, mediate the interaction with a common cellular target, hsp90. We have identified the binding domain in hsp90 for cyclophilin 40 (CyP40) using a two-hybrid system screen of a mouse cDNA library. All isolated clones encoded the intact(More)
Over the past decade, nanoparticles (NPs) have been increasingly developed in various biomedical applications such as cell tracking, biosensing, contrast imaging, targeted drug delivery, and tissue engineering. Their versatility in design and function has made them an attractive, alternative choice in many biological and biomedical applications. Cellular(More)
Arylamine N-acetyltransferase-1 (NAT1) has been associated with disorders involving folate metabolism, such as spina bifida, as well as numerous human cancers. As a result, the transcriptional and post-transcriptional regulation of NAT1 activity has been extensively studied. However, little work has been reported on the epigenetic control of NAT1(More)
Sulfotransferase 4A1 (SULT4A1) is a novel sulfotransferase expressed almost exclusively in the brain. The gene is located on chromosome 22q13.3, a region implicated in predisposition to schizophrenia. Recently, a variable microsatellite region located upstream of SULT4A1 was found to be associated with an increase in schizophrenia risk. We hypothesised that(More)