Learn More
Sulforaphane (SFN) is an isothiocyanate from broccoli that induces phase 2 detoxification enzymes. We recently reported that SFN acts as a histone deacetylase (HDAC) inhibitor in human colon cancer cells in vitro, and the present study sought to extend these findings in vivo. In mice treated with a single oral dose of 10 µmol SFN, there was significant(More)
Sulforaphane (SFN), an isothiocyanate first isolated from broccoli, exhibits chemopreventive properties in prostate cancer cells through mechanisms that are poorly understood. We recently reported on a novel mechanism of chemoprotection by SFN in human colon cancer cells, namely the inhibition of histone deacetylase (HDAC). Here, we show that addition of 15(More)
Sulforaphane (SFN), a compound found at high levels in broccoli and broccoli sprouts, is a potent inducer of phase 2 detoxification enzymes and inhibits tumorigenesis in animal models. SFN also has a marked effect on cell cycle checkpoint controls and cell survival and/or apoptosis in various cancer cells, through mechanisms that are poorly understood. We(More)
Post-translational modifications of histones are the subject of intensive investigations with the aim of decoding how they regulate, alone or in combination, chromatin structure, genomic stability, and gene expression. Major epigenetic programming events take place during gametogenesis and fetal development and are thought to have long-lasting consequences(More)
Genomic instability is a common feature of cancer etiology. This provides an avenue for therapeutic intervention, since cancer cells are more susceptible than normal cells to DNA damaging agents. However, there is growing evidence that the epigenetic mechanisms that impact DNA methylation and histone status also contribute to genomic instability. The DNA(More)
Epidemiological and animal studies suggest that tea may be protective towards cancers of the GI tract. White tea, the least processed form of tea, contains high levels of polyphenols and, like green tea, is chemopreventive towards heterocyclic amine-initiated colonic aberrant crypt formation in male F344 rats. We examined for the first time the relative(More)
Sulforaphane (SFN), an isothiocyanate derived from cruciferous vegetables, induces potent anti-proliferative effects in prostate cancer cells. One mechanism that may contribute to the anti-proliferative effects of SFN is the modulation of epigenetic marks, such as inhibition of histone deacetylase (HDAC) enzymes. However, the effects of SFN on other common(More)
There is growing interest in the various mechanisms that regulate chromatin remodeling, including modulation of histone deacetylase (HDAC) activities. Competitive HDAC inhibitors disrupt the cell cycle and/or induce apoptosis via de-repression of genes such as P21 and BAX, and cancer cells appear to be more sensitive than non-transformed cells to(More)
Histone deacetylase (HDAC) inhibitors have the potential to derepress epigenetically silenced genes in cancer cells, leading to cell cycle arrest and apoptosis. In the present study, we screened several garlic-derived small organosulfur compounds for their ability to inhibit HDAC activity in vitro. Among the organosulfur compounds examined, allyl mercaptan(More)
BACKGROUND Histone deacetylase (HDAC) inhibitors are currently undergoing clinical evaluation as anti-cancer agents. Dietary constituents share certain properties of HDAC inhibitor drugs, including the ability to induce global histone acetylation, turn-on epigenetically-silenced genes, and trigger cell cycle arrest, apoptosis, or differentiation in cancer(More)