Learn More
In gene expression data, a bicluster is a subset of the genes exhibiting consistent patterns over a subset of the conditions. We propose a new method to detect significant biclusters in large expression datasets. Our approach is graph theoretic coupled with statistical modelling of the data. Under plausible assumptions, our algorithm is polynomial and is(More)
To elucidate cellular machinery on a global scale, we performed a multiple comparison of the recently available protein-protein interaction networks of Caenorhabditis elegans, Drosophila melanogaster, and Saccharomyces cerevisiae. This comparison integrated protein interaction and sequence information to reveal 71 network regions that were conserved across(More)
We implement a strategy for aligning two protein-protein interaction networks that combines interaction topology and protein sequence similarity to identify conserved interaction pathways and complexes. Using this approach we show that the protein-protein interaction networks of two distantly related species, Saccharomyces cerevisiae and Helicobacter(More)
A fundamental challenge in human health is the identification of disease-causing genes. Recently, several studies have tackled this challenge via a network-based approach, motivated by the observation that genes causing the same or similar diseases tend to lie close to one another in a network of protein-protein or functional interactions. However, most of(More)
In a clustering problem one has to partition a set of elements into homogeneous and well-separated subsets. From a graph theoretic point of view, a cluster graph is a vertex-disjoint union of cliques. The clustering problem is the task of making fewest changes to the edge set of an input graph so that it becomes a cluster graph. We study the complexity of(More)
Functional annotation of proteins is a fundamental problem in the post-genomic era. The recent availability of protein interaction networks for many model species has spurred on the development of computational methods for interpreting such data in order to elucidate protein function. In this review, we describe the current computational approaches for the(More)
MOTIVATION Microarrays have become a central tool in biological research. Their applications range from functional annotation to tissue classification and genetic network inference. A key step in the analysis of gene expression data is the identification of groups of genes that manifest similar expression patterns. This translates to the algorithmic problem(More)
Novel DNA mlcroarray technologies enable the monitoring of expression levels of thousands of genes simultaneously. This allows a global view on the transcription levels of many (or all) genes when the cell undergoes specific conditions or processes. Analyzing gene expression data requires the clustering of genes into groups with similar expression patterns.(More)
Gene expression microarrays are a prominent experimental tool in functional genomics which has opened the opportunity for gaining global, systems-level understanding of transcriptional networks. Experiments that apply this technology typically generate overwhelming volumes of data, unprecedented in biological research. Therefore the task of mining(More)
Mounting evidence shows that many protein complexes are conserved in evolution. Here we use conservation to find complexes that are common to yeast <i>S. Cerevisiae</i> and bacteria <i>H. pylori</i>. Our analysis combines protein interaction data, that are available for each of the two species, and orthology information based on protein sequence comparison.(More)