Learn More
We have identified three Arabidopsis genes with GAMYB-like activity, AtMYB33, AtMYB65, and AtMYB101, which can substitute for barley (Hordeum vulgare) GAMYB in transactivating the barley alpha-amylase promoter. We have investigated the relationships between gibberellins (GAs), these GAMYB-like genes, and petiole elongation and flowering of Arabidopsis.(More)
Flowering (inflorescence formation) of the grass Lolium temulentum is strictly regulated, occurring rapidly on exposure to a single long day (LD). During floral induction, L. temulentum differs significantly from dicot species such as Arabidopsis in the expression, at the shoot apex, of two APETALA1 (AP1)-like genes, LtMADS1 and LtMADS2, and of L.(More)
The photosynthetic assimilates in leaves of Perilla crispa attached to the plant were labeled by treating the leaves with (14)CO(2). When subsequently detached, these leaves exuded a negligible amount of radioactivity from the cut petiole into water. Ethylenediaminetetraacetate (EDTA), citric acid, and ethyleneglycol-bis (beta-aminoethyl ether)(More)
The long-day plant Arabidopsis thaliana (L.) Heynh. flowers early in response to brief end-of-day (EOD) exposures to far-red light (FR) following a fluorescent short day of 8 h. FR promotion of flowering was nullified by subsequent brief red light (R) EOD exposure, indicating phytochrome involvement. The EOD response to R or FR is a robust measure of(More)
One challenge for plant biology has been to identify floral stimuli at the shoot apex. Using sensitive and specific gas chromatography-mass spectrometry techniques, we have followed changes in gibberellins (GAs) at the shoot apex during long day (LD)-regulated induction of flowering in the grass Lolium temulentum. Two separate roles of GAs in flowering are(More)
During the later stages of growth of grains of wheat (Triticum aestivum L. cvs. WW15 and Gabo) there is a dramatic increase (up to 40fold) in the content of abscisic acid (ABA) to 4–6 ng per grain. This level remains high from 25 to 40 days after anthesis. Then, in association with natural or forced drying of the grain, there is a rapid drop (5–10 fold) in(More)
Seasonal control of flowering often involves leaf sensing of daylength coupled to time measurement and generation and transport of florigenic signals to the shoot apex. We show that transmitted signals in the grass Lolium temulentum may include gibberellins (GAs) and the FLOWERING LOCUS T (FT) gene. Within 2 h of starting a florally inductive long day (LD),(More)
Signals produced in leaves are transported to the shoot apex where they cause flowering. Protein of the gene FLOWERING LOCUS T (FT) is probably a long day (LD) signal in Arabidopsis. In the companion paper, rapid LD increases in FT expression associated with flowering driven photosynthetically in red light were documented. In a far red (FR)-rich LD, along(More)
Long day (LD) exposure of rosette plants causes rapid stem/petiole elongation, a more vertical growth habit, and flowering; all changes are suggestive of a role for the gibberellin (GA) plant growth regulators. For Arabidopsis (Arabidopsis thaliana) L. (Heynh), we show that enhancement of petiole elongation by a far-red (FR)-rich LD is mimicked by a brief(More)
Comprehensive studies in grasses show that gibberellins (GAs) play a role as a florigen. For Lolium temulentum, which flowers in response to a single long day (LD), GAs are a transmitted signal, their content increasing in the leaf early in the LD and then, hours later, at the shoot apex. There is a continuous trail of evidence of hormonal action of these(More)