Learn More
To what extent dorsal horn interneurons contribute to the modality specific processing of pain and itch messages is not known. Here, we report that loxp/cre-mediated CNS deletion of TR4, a testicular orphan nuclear receptor, results in loss of many excitatory interneurons in the superficial dorsal horn but preservation of primary afferents and spinal(More)
Dorsal root ganglia (DRG) neurons, including the nociceptors that detect painful thermal, mechanical, and chemical stimuli, transmit information to spinal cord neurons via glutamatergic and peptidergic neurotransmitters. However, the specific contribution of glutamate to pain generated by distinct sensory modalities or injuries is not known. Here we(More)
Despite the impact of chronic pain on the quality of life in patients, including changes to affective state and daily life activities, rodent preclinical models rarely address this aspect of chronic pain. To better understand the behavioral consequences of the tissue and nerve injuries typically used to model neuropathic and inflammatory pain in mice, we(More)
The function of the cortical microcircuitry is still mysterious. Using a bottom-up analysis based on the biophysics and connectivity of cortical neurons, we propose the hypothesis that the neocortex is essentially a linear integrator of inputs. Dendritic spines would slow the neuron and contribute to linearize input summation. Since excitatory axons are(More)
We studied the possibility that presynaptic inhibition of transmitter release from postganglionic sympathetic neurons contributes to the overall reduction of sympathetic tone produced by moxonidine, rilmenidine and 5-bromo-6-(2-imidazolin-2-ylamino)-quinoxaline tartrate (UK 14304). In pithed rabbits without electric stimulation, moxonidine, rilmenidine and(More)
Dental pain, including toothache, is one of the most prevalent types of orofacial pain, causing severe, persistent pain that has a significant negative effect on quality of life, including eating disturbances, mood changes, and sleep disruption. As the primary cause of toothache pain is injury to the uniquely innervated dental pulp, rodent models of this(More)
  • 1