Robin Ray Gutell

Learn More
Phylogenetic trees have a multitude of applications in biology, epidemiology, conservation and even forensics. However, the inference of phylogenetic trees can be extremely computationally intensive. The computational burden of such analyses becomes even greater when model-based methods are used. Model-based methods have been repeatedly shown to be the most(More)
Comparative analysis of RNA sequences is the basis for the detailed and accurate predictions of RNA structure and the determination of phylogenetic relationships for organisms that span the entire phylogenetic tree. Underlying these accomplishments are very large, well-organized, and processed collections of RNA sequences. This data, starting with the(More)
RNA molecules fold into characteristic secondary and tertiary structures that account for their diverse functional activities. Many of these RNA structures are assembled from a collection of RNA structural motifs. These basic building blocks are used repeatedly, and in various combinations, to form different RNA types and define their unique structural and(More)
As an accompanying manuscript to the release of the honey bee genome, we report the entire sequence of the nuclear (18S, 5.8S, 28S and 5S) and mitochondrial (12S and 16S) ribosomal RNA (rRNA)-encoding gene sequences (rDNA) and related internally and externally transcribed spacer regions of Apis mellifera (Insecta: Hymenoptera: Apocrita). Additionally, we(More)
Inferring higher-order structure for complex RNA molecules, such as the ribosomal RNAs has relied primarily on comparative methods. Underlying these methods is the premise that molecules with different primary structure and similar functional characteristics have similar secondary and tertiary structure [Reviewed in: 1]. For these methods to be effective,(More)
The 16S and 23S rRNA higher-order structures inferred from comparative analysis are now quite refined. The models presented here differ from their immediate predecessors only in minor detail. Thus, it is safe to assert that all of the standard secondary-structure elements in (prokaryotic) rRNAs have been identified, with approximately 90% of the individual(More)
The determination of the 16S and 23S rRNA secondary structure models was initiated shortly after the first complete 16S and 23S rRNA sequences were determined in the late 1970s. The structures that are common to all 16S rRNAs and all 23S rRNAs were determined using comparative methods from the analysis of thousands of rRNA sequences. Twenty-plus years(More)
Comparative modeling of secondary structure is a proven approach to predicting higher order structural elements in homologous RNA molecules. Here we present the results of a comprehensive comparison of newly modeled or refined secondary structures for the cytoplasmic large subunit (23 S-like) rRNA of eukaryotes. This analysis, which covers a broad(More)
A collection of diverse 16S and 16S-like rRNA secondary structure diagrams are available. This set of rRNAs contains representative structures from all of the major phylogenetic groupings--Archaea, (eu)Bacteria, and the nucleus, mitochondrion, and chloroplast of Eucarya. Within this broad phylogenetic sampling are examples of the major forms of structural(More)
We have analyzed the base-pairing probability distributions of 16 S and 16 S-like, and 23 S and 23 S-like ribosomal RNAs of Archaea, Bacteria, chloroplasts, mitochondria and Eukarya, as predicted by the partition function approach for RNA folding introduced by McCaskill. A quantitative analysis of the reliability of RNA folding is done by comparing the(More)