Learn More
Phylogenetic trees have a multitude of applications in biology, epidemiology, conservation and even forensics. However, the inference of phylogenetic trees can be extremely computationally intensive. The computational burden of such analyses becomes even greater when model-based methods are used. Model-based methods have been repeatedly shown to be the most(More)
BACKGROUND Comparative analysis of RNA sequences is the basis for the detailed and accurate predictions of RNA structure and the determination of phylogenetic relationships for organisms that span the entire phylogenetic tree. Underlying these accomplishments are very large, well-organized, and processed collections of RNA sequences. This data, starting(More)
Comparative sequence analysis addresses the problem of RNA folding and RNA structural diversity, and is responsible for determining the folding of many RNA molecules, including 5S, 16S, and 23S rRNAs, tRNA, RNAse P RNA, and Group I and II introns. Initially this method was utilized to fold these sequences into their secondary structures. More recently, this(More)
As an accompanying manuscript to the release of the honey bee genome, we report the entire sequence of the nuclear (18S, 5.8S, 28S and 5S) and mitochondrial (12S and 16S) ribosomal RNA (rRNA)-encoding gene sequences (rDNA) and related internally and externally transcribed spacer regions of Apis mellifera (Insecta: Hymenoptera: Apocrita). Additionally, we(More)
A collection of diverse 16S and 16S-like rRNA secondary structure diagrams are available. This set of rRNAs contains representative structures from all of the major phylogenetic groupings--Archaea, (eu)Bacteria, and the nucleus, mitochondrion, and chloroplast of Eucarya. Within this broad phylogenetic sampling are examples of the major forms of structural(More)
INTRODUCTION This compilation is part of an ongoing effort to maintain a comprehensive and continually updated collection of large subunit (LSU; 23S and 23S-like) rRNA secondary structures and associated sequence and citation information. Table 1 gives a breakdown of the number and phylogenetic distribution of sequences currently in this LSU rRNA database.(More)
BACKGROUND A detailed understanding of an RNA's correct secondary and tertiary structure is crucial to understanding its function and mechanism in the cell. Free energy minimization with energy parameters based on the nearest-neighbor model and comparative analysis are the primary methods for predicting an RNA's secondary structure from its sequence.(More)
We have analyzed the base-pairing probability distributions of 16 S and 16 S-like, and 23 S and 23 S-like ribosomal RNAs of Archaea, Bacteria, chloroplasts, mitochondria and Eukarya, as predicted by the partition function approach for RNA folding introduced by McCaskill. A quantitative analysis of the reliability of RNA folding is done by comparing the(More)
DNA sequences of nine genes mtLSU; nuclear: 18S and 26S rDNAs) from 100 species of basal angiosperms and gymnosperms were analyzed using parsimony, Bayesian, and maximum likelihood methods. All of these analyses support the following consensus of relationships among basal angiosperms. First, Amborella, Nymphaeaceae, and Austrobaileyales are strongly(More)
The mitochondrial genome of Plasmodium falciparum encodes highly fragmented rRNAs. Twenty small RNAs which are putative rRNA fragments have been found and 15 of them have been identified as corresponding to specific regions of rRNA sequence. To investigate the possible interactions between the fragmented rRNAs in the ribosome, we have mapped the ends of(More)