Learn More
Invasive infection with Gram-positive and Gram-negative bacteria often results in septic shock and death. The basis for the earliest steps in innate immune response to Gram-positive bacterial infection is poorly understood. The LPS component of the Gram-negative bacterial cell wall appears to activate cells via CD14 and Toll-like receptor (TLR) 2 and TLR4.(More)
Toll-like receptors (TLRs) 2 and 4 are signal transducers for lipopolysaccharide, the major proinflammatory constituent in the outer membrane of Gram-negative bacteria. We observed that membrane lipoproteins/lipopeptides from Borrelia burgdorferi, Treponema pallidum, and Mycoplasma fermentans activated cells heterologously expressing TLR2 but not those(More)
Lipopolysaccharide (LPS) is the main inducer of shock and death in Gram-negative sepsis. Recent evidence suggests that LPS-induced signal transduction begins with CD14-mediated activation of 1 or more Toll-like receptors (TLRs). The lipid A analogues lipid IVa and Rhodobacter sphaeroides lipid A (RSLA) exhibit an uncommon species-specific pharmacology. Both(More)
Toll-like receptors (TLRs) have recently been identified as fundamental components of the innate immune response to bacterial pathogens. We investigated the role of TLR signaling in immune defense of the mucosal epithelial cells of the lower female genital tract. This site provides first line defense against microbial pathogens while remaining tolerant to a(More)
CD11c/CD18 is a member of the leukocyte integrin family, heterodimeric adhesion molecules that interact with a diverse repertoire of ligands, including bacterial lipopolysaccharide (LPS). Their role as signal transducing receptors remains uncertain. We used a heterologous expression system to determine if CD11c/CD18 was capable of initiating signal(More)
The ability of a host to sense invasion by pathogenic organisms and to respond appropriately to control infection is paramount to survival. In the case of sepsis and septic shock, however, an exaggerated systemic response may, in fact, contribute to the morbidity and mortality associated with overwhelming infections. The innate immune system has evolved as(More)
Gram-negative bacterial LPS is a potent activator of inflammatory responses. The binding of LPS to CD14 initiates signal transduction; however, the molecular processes immediately following this event remain unclear. We engineered an LPS-inducible fibroblast reporter cell line to facilitate the use of molecular genetic techniques to study the LPS signaling(More)
Exaggerated responses by phagocytes to bacterial endotoxin [lipopolysaccharide (LPS)] may result in the sepsis syndrome. While a number of LPS-binding proteins have been identified on immune cells, only CD14 has been definitively shown to be involved in signal transduction in response to LPS. The beta2 leukocyte integrins are a family of transmembrane(More)
Chlamydia trachomatis is an obligate intracellular gram-negative pathogen and the etiologic agent of significant ocular and genital tract diseases. Chlamydiae primarily infect epithelial cells, and the inflammatory response of these cells to the infection directs both the innate and adaptive immune response. This study focused on determining the cellular(More)
Gram-negative bacterial lipopolysaccharide (LPS) stimulates phagocytic leukocytes by interacting with the cell surface protein CD14. Cellular responses to LPS are markedly potentiated by the LPS-binding protein (LBP), a lipid-transfer protein that binds LPS aggregates and transfers LPS monomers to CD14. LBP also transfers LPS to lipoproteins, thereby(More)