Learn More
The APOBEC3 restriction factors are a family of deoxycytidine deaminases that are able to suppress replication of viruses with a single-stranded DNA intermediate by inducing mutagenesis and functional inactivation of the virus. Of the seven human APOBEC3 enzymes, only APOBEC3-D, -F, -G, and -H appear relevant to restriction of HIV-1 in CD4+ T cells and will(More)
APOBEC3A belongs to a family of single-stranded DNA (ssDNA) DNA cytosine deaminases that are known for restriction of HIV through deamination-induced mutational inactivation, e.g. APOBEC3G, or initiation of somatic hypermutation and class switch recombination (activation-induced cytidine deaminase). APOBEC3A, which is localized to both the cytoplasm and(More)
The APOBEC3 deoxycytidine deaminase family functions as host restriction factors that can block replication of Vif (virus infectivity factor) deficient HIV-1 virions to differing degrees by deaminating cytosines to uracils in single-stranded (-)HIV-1 DNA. Upon replication of the (-)DNA to (+)DNA, the HIV-1 reverse transcriptase incorporates adenines(More)
Cytosine mutations within TCA/T motifs are common in cancer. A likely cause is the DNA cytosine deaminase APOBEC3B (A3B). However, A3B-null breast tumours still have this mutational bias. Here we show that APOBEC3H haplotype I (A3H-I) provides a likely solution to this paradox. A3B-null tumours with this mutational bias have at least one copy of A3H-I(More)
APOBEC3G is a retroviral restriction factor that can inhibit the replication of human immunodeficiency virus, type 1 (HIV-1) in the absence of the viral infectivity factor (Vif) protein. Virion-encapsidated APOBEC3G can deaminate cytosine to uracil in viral (-)DNA, which leads to hypermutation and inactivation of the provirus. APOBEC3G catalyzes these(More)
APOBEC3H is a deoxycytidine deaminase that can restrict the replication of HIV-1 in the absence of the viral protein Vif that induces APOBEC3H degradation in cells. APOBEC3H exists in humans as seven haplotypes (I-VII) with different cellular stabilities. Of the three stable APOBEC3H haplotypes (II, V, and VII), haplotypes II and V occur most frequently in(More)
  • D Frohman-Bentchkowksy, M Lenzlinger, +20 authors R P Love
  • 2002
Microwave generation in a NEgative Zesistance Field-Effect Transistor (NERFET) is reported for the first time. This device is based on a GaAs/AlGaAs heterostructure which exhibits negative differential resistance due to a transfer of hot-electrons out of a source-drain channel and into a conducting substrate. In an untuned microwave circuit at 77 K, the(More)
The APOBEC3 (A3) enzymes, A3G and A3F, are coordinately expressed in CD4+ T cells and can become coencapsidated into HIV-1 virions, primarily in the absence of the viral infectivity factor (Vif). A3F and A3G are deoxycytidine deaminases that inhibit HIV-1 replication by inducing guanine-to-adenine hypermutation through deamination of cytosine to form uracil(More)
  • 1